Oncolytic viruses have emerged as a promising modality in cancer treatment given their high synergy with highly efficient immune checkpoint inhibitors. However, their potency is limited by their rapid in vivo clearance. To overcome this, we coated oncolytic vaccinia viruses (oVV) with erythrocyte-derived membranes (EDMs), hypothesizing that they would not only remain in systemic circulation for longer as erythrocytes would when administered intravenously, but also respond to environmental pH cues due to their membrane surface sialic acid residues.
View Article and Find Full Text PDF