The accumulation of α-synuclein inclusions in vulnerable neuronal populations pathologically defines Lewy body diseases including Parkinson's disease. Recent pre-clinical studies suggest poly(ADP-ribose) polymerase-1 activation and the subsequent generation of poly(ADP-ribose) polymer represent key steps in the formation of toxic α-synuclein aggregates and neurodegeneration. Several studies suggest that the inhibition of poly(ADP-ribose) polymerase-1 activity via the poly(ADP-ribose) polymerase-1/2 small molecule inhibitor ABT-888 (Veliparib), a drug in clinical trials for different cancers, may prevent or ameliorate α-synuclein fibril-induced aggregation, inclusion formation and dopaminergic neurodegeneration.
View Article and Find Full Text PDFBackground: Leucine rich repeat kinase 2 (LRRK2) and SNCA are genetically linked to late-onset Parkinson's disease (PD). Aggregated α-synuclein pathologically defines PD. Recent studies identified elevated LRRK2 expression in pro-inflammatory CD16+ monocytes in idiopathic PD, as well as increased phosphorylation of the LRRK2 kinase substrate Rab10 in monocytes in some LRRK2 mutation carriers.
View Article and Find Full Text PDFα-Synuclein aggregation underlies pathological changes in Lewy body dementia. Recent studies highlight structural variabilities associated with α-synuclein aggregates in patient populations. Here, we develop a quantitative real-time quaking-induced conversion (qRT-QuIC) assay to measure permissive α-synuclein fibril-templating activity in tissues and cerebrospinal fluid (CSF).
View Article and Find Full Text PDFPathogenic missense mutations in the leucine-rich repeat kinase 2 gene, encoding LRRK2, results in the upregulation of Rab10 and Rab12 phosphorylation in different cells and tissues. Here, we evaluate levels of the LRRK2 kinase substrates pT73-Rab10 and pS106-Rab12 proteins in rat brain tissues from different genetic backgrounds. Whereas lines of Sprague Dawley rats have equivalent levels of pT73-Rab10 and pS106-Rab12 similar to Lrrk2 knockout rats, Long-Evans rats have levels of pT73-Rab10 and pS106-Rab12 comparable to G2019S-LRRK2 BAC transgenic rats.
View Article and Find Full Text PDFHyper-activated LRRK2 is linked to Parkinson's disease susceptibility and progression. Quantitative measures of LRRK2 inhibition, especially in the brain, maybe critical in the development of successful LRRK2-targeting therapeutics. In this study, two different brain-penetrant and selective LRRK2 small-molecule kinase inhibitors (PFE-360 and MLi2) were orally administered to groups of cynomolgus macaques.
View Article and Find Full Text PDFGenetic studies have identified variants in the gene as important components of Parkinson's disease (PD) pathobiology. Biochemical and emergent biomarker studies have coalesced around LRRK2 hyperactivation in disease. Therapeutics that diminish LRRK2 activity, either with small molecule kinase inhibitors or anti-sense oligonucleotides, have recently advanced to the clinic.
View Article and Find Full Text PDFMutations in () are the most common cause of late-onset, autosomal-dominant familial Parkinson's disease (PD). LRRK2 functions as both a kinase and GTPase, and PD-linked mutations are known to influence both enzymatic activities. While PD-linked LRRK2 mutations can commonly induce neuronal damage in culture models, the mechanisms underlying these pathogenic effects remain uncertain.
View Article and Find Full Text PDFThe G2019S mutation in LRRK2 is one of the most common known genetic causes of neurodegeneration and Parkinson disease (PD). LRRK2 mutations are thought to enhance LRRK2 kinase activity. Efficacious small molecule LRRK2 kinase inhibitors with favorable drug properties have recently been developed for pre-clinical studies in rodent models, and inhibitors have advanced to safety trials in humans.
View Article and Find Full Text PDF