Publications by authors named "Kaela Kelly"

Article Synopsis
  • Coding variations in the LRRK2 gene linked to Parkinson's disease increase kinase activity, particularly affecting the phosphorylation of specific proteins like S1292 and RAB10.
  • The study aimed to assess the consistency of measuring LRRK2 kinase activity across different labs using established protocols and various cell types.
  • While western blot methods could detect LRRK2 activity in cells and tissues with mutant LRRK2, there was no successful identification of endogenous LRRK2 activity in the tested models, highlighting the need for improved measurement techniques.
View Article and Find Full Text PDF

The accumulation of α-synuclein inclusions in vulnerable neuronal populations pathologically defines Lewy body diseases including Parkinson's disease. Recent pre-clinical studies suggest poly(ADP-ribose) polymerase-1 activation and the subsequent generation of poly(ADP-ribose) polymer represent key steps in the formation of toxic α-synuclein aggregates and neurodegeneration. Several studies suggest that the inhibition of poly(ADP-ribose) polymerase-1 activity via the poly(ADP-ribose) polymerase-1/2 small molecule inhibitor ABT-888 (Veliparib), a drug in clinical trials for different cancers, may prevent or ameliorate α-synuclein fibril-induced aggregation, inclusion formation and dopaminergic neurodegeneration.

View Article and Find Full Text PDF

Background: Leucine rich repeat kinase 2 (LRRK2) and SNCA are genetically linked to late-onset Parkinson's disease (PD). Aggregated α-synuclein pathologically defines PD. Recent studies identified elevated LRRK2 expression in pro-inflammatory CD16+ monocytes in idiopathic PD, as well as increased phosphorylation of the LRRK2 kinase substrate Rab10 in monocytes in some LRRK2 mutation carriers.

View Article and Find Full Text PDF
Article Synopsis
  • Lewy pathology, featuring α-synuclein inclusions, is a key characteristic of Parkinson's Disease (PD), particularly associated with dominant mutations in the LRRK2 gene, especially the G2019S variant.
  • Research indicates that LRRK2 impacts α-synuclein's localization and transport in neurons, affecting non-motor symptoms like cognitive deficits and anxiety.
  • Inhibition of LRRK2 kinase activity enhances α-synuclein's presence at presynaptic terminals and promotes its transport within neurons, suggesting a direct link between LRRK2 and α-synuclein dynamics in PD.
View Article and Find Full Text PDF

α-Synuclein aggregation underlies pathological changes in Lewy body dementia. Recent studies highlight structural variabilities associated with α-synuclein aggregates in patient populations. Here, we develop a quantitative real-time quaking-induced conversion (qRT-QuIC) assay to measure permissive α-synuclein fibril-templating activity in tissues and cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

Pathogenic missense mutations in the leucine-rich repeat kinase 2 gene, encoding LRRK2, results in the upregulation of Rab10 and Rab12 phosphorylation in different cells and tissues. Here, we evaluate levels of the LRRK2 kinase substrates pT73-Rab10 and pS106-Rab12 proteins in rat brain tissues from different genetic backgrounds. Whereas lines of Sprague Dawley rats have equivalent levels of pT73-Rab10 and pS106-Rab12 similar to Lrrk2 knockout rats, Long-Evans rats have levels of pT73-Rab10 and pS106-Rab12 comparable to G2019S-LRRK2 BAC transgenic rats.

View Article and Find Full Text PDF

Hyper-activated LRRK2 is linked to Parkinson's disease susceptibility and progression. Quantitative measures of LRRK2 inhibition, especially in the brain, maybe critical in the development of successful LRRK2-targeting therapeutics. In this study, two different brain-penetrant and selective LRRK2 small-molecule kinase inhibitors (PFE-360 and MLi2) were orally administered to groups of cynomolgus macaques.

View Article and Find Full Text PDF

Genetic studies have identified variants in the gene as important components of Parkinson's disease (PD) pathobiology. Biochemical and emergent biomarker studies have coalesced around LRRK2 hyperactivation in disease. Therapeutics that diminish LRRK2 activity, either with small molecule kinase inhibitors or anti-sense oligonucleotides, have recently advanced to the clinic.

View Article and Find Full Text PDF

Mutations in () are the most common cause of late-onset, autosomal-dominant familial Parkinson's disease (PD). LRRK2 functions as both a kinase and GTPase, and PD-linked mutations are known to influence both enzymatic activities. While PD-linked LRRK2 mutations can commonly induce neuronal damage in culture models, the mechanisms underlying these pathogenic effects remain uncertain.

View Article and Find Full Text PDF

The G2019S mutation in LRRK2 is one of the most common known genetic causes of neurodegeneration and Parkinson disease (PD). LRRK2 mutations are thought to enhance LRRK2 kinase activity. Efficacious small molecule LRRK2 kinase inhibitors with favorable drug properties have recently been developed for pre-clinical studies in rodent models, and inhibitors have advanced to safety trials in humans.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionto2rapmttfi9ks5b3b5m9genpi1n8a6v): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once