Publications by authors named "Kae-Dal Kwack"

A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer.

View Article and Find Full Text PDF

Nanoscale two-bit/cell NAND-type silicon-oxide-nitride-oxide-silicon (SONOS) flash memory devices with different tunneling oxide thicknesses were designed to reduce the short channel effect and the coupling interference. The process step and the electrical characteristics of the proposed SONOS memory devices were simulated by using SUPREM-4 and MEDICI, respectively. The short channel effect in the nanoscale two-bit/cell SONOS devices was decreased than that of the conventional devices due to a larger effective channel length.

View Article and Find Full Text PDF

Nanoscale two-bit/cell NAND silicon-oxide-nitride-oxide-silicon flash memory devices based on a separated double-gate (SDG) saddle structure with a recess channel region had two different doping regions in silicon-fin channel to operate two-bit per cell. A simulation results showed that the short channel effect, the cross-talk problem between cells, and the increase in threshold voltage distribution were minimized, resulting in the enhancement of the scaling-down characteristics and the program/erase speed.

View Article and Find Full Text PDF

Changes in electric parameters of a mesoporous silicon treated by a plasma chemical etching with fluorine and hydrogen ions, under the adsorption of NEPO (Nematodetransmitted Polyhedral) plant viruses such as TORSV (Tomato Ringspot Virus), GFLV (Grapevine Fan Leaf Virus) and protein macromolecule from TORSV particles are described. The current response to the applied voltage is measured for each virus particle to investigate the material parameters which are sensitive to the adsorbed particles. The peculiar behaviors of the response are modeled by the current-voltage relationship in a MOSFET.

View Article and Find Full Text PDF

A closed-form solution of describing perceived image in stereoscopic imaging systems with radial recording and projecting geometry for arbitrary viewer positions is presented. This solution is derived by finding a condition for making the heights of homolog points in both left and right images projected on the screen in the geometry equal. The solution has the same equation form as that of the parallel geometry except that it has a constant shifting term in the horizontal direction.

View Article and Find Full Text PDF

In full-parallax three-dimensional (3-D) imaging systems, the pixel cells often have the shape of a rhombus. Proper arrangement of pixels in these rhombic-shaped cells is important to maximize the quality of displayable 3-D images with a given display panel. The possible number of pixel arrangements in a rhombic cell with a definite dimension is found by considering the number of possible crossings between parallel line families forming the pixel cells, when the slopes of the lines are approximated by the ratio between the number of pixels in the vertical and horizontal directions.

View Article and Find Full Text PDF