We previously reported that a combination of 4 monoclonal antibodies (mAbs) (cocktail A) to type II collagen (CII), including immunoglobulin G (IgG)2b (C2B-9 and C2B-14) and IgG2a (C2A-7 and C2A-12), induced arthritis in DBA/1J mice. In this study, we found that C2B-9 and C2A-7 as well as C2B-14 and C2A-12 recognized the same or similar epitopes on CII. Based on these data, we hypothesized that the combination of more than 3 mAbs recognizing different epitopes on CII may more efficiently induce arthritis.
View Article and Find Full Text PDFBackground: The collagen antibody-induced arthritis (CAIA) model, which employs a cocktail of monoclonal antibodies (mAbs) to type II collagen (CII), has been widely used for studying the pathogenesis of autoimmune arthritis. In this model, not all mAbs to CII are capable of inducing arthritis because one of the initial events is the formation of collagen-antibody immune complexes on the cartilage surface or in the synovium, and subsequent activation of the complement by the complexes induces arthritis, suggesting that a combination of mAbs showing strong ability to bind mouse CII and activate the complement may effectively induce arthritis in mice. In the present study, we examined the relationship between the induction of arthritis by the combination of IgG2a (CII-6 and C2A-12), IgG2b (CII-3, C2B-14 and C2B-16) and IgM (CM-5) subclones of monoclonal antibodies (mAb) of anti-bovine or chicken CII and the ability of mAbs to activate complement and bind mouse CII.
View Article and Find Full Text PDFCry toxins have been reported to bind not only to receptors on insect cells but also to several unrelated proteins. In this study, we investigated the binding properties of Bacillus thuringiensis Cry toxins, focusing on domain III, a Cry toxin region with a structure that of the galactose-binding domain-like. Cry1Aa, Cry1Ac, and Cry8Ca specifically bound to several proteins unrelated to insect midgut cells.
View Article and Find Full Text PDFThe effect of synthetic peptide bioregulators (Epitalon, Livagen and Vilon) on structural and facultative heterochromatin of cultivated lymphocytes have been studied among old (75-88yr.) people. The data obtained indicate that epitalon, livagen and vilon: 1) activate synthetic processes, caused by reactivation of ribosomal genes as a result of deheterochromatinization (decondensation) of nucleolus organizer regions; 2) induce unrolling (deheterochromatinization) of total heterochromatin; 3) release genes repressed by heterochromatinization (condensation) of euchromatic regions forming facultative heterochromatin; 4) epitalon and livagen induce deheterochromatinization (decondensation) of pericentromeric structural heterochromatin of the chromosomes1 and 9.
View Article and Find Full Text PDFCarbon monoxide (CO), produced endogenously during heme degradation, is considered a messenger molecule in vascular and neurologic tissues. To study this role, it is important to determine CO concentration in target tissues pre- and post-perturbations. Here, we describe a sensitive and reproducible method, which is linear and accurate, and provide some examples of its application for quantitation of CO concentrations in tissues pre- and post-perturbations.
View Article and Find Full Text PDFBmLBP is a lipopolysaccharide-binding protein in B. mori and participates in bacterial clearance in vivo. Here, we investigated the function of BmLBP more specifically.
View Article and Find Full Text PDFContext: Apolipoprotein E epsilon4(ApoE epsilon4) is a well-known risk factor for Alzheimer disease and cardiovascular disease. Sleep-disordered breathing occurs in Alzheimer disease patients and increases risks for cardiovascular disease. Complex interactions among sleep, brain pathology, and cardiovascular disease may occur in ApoE epsilon4 carriers.
View Article and Find Full Text PDFThe Bacillus thuringiensis Cry1Aa toxin-binding region of Bombyx mori aminopeptidase N (APN) was analyzed, to better understand the molecular mechanism of susceptibility to the toxin and the development of resistance in insects. APN was digested with lysylendopeptidase and the ability of the resulting fragments to bind to Cry1Aa and 1Ac toxins was examined. The binding abilities of the two toxins to these fragments were different.
View Article and Find Full Text PDFWe investigated the binding proteins for three Cry toxins, Cry1Aa, Cry1Ac, and the phylogenetically distant Cry9Da, in the midgut cell membrane of the silkworm. In a ligand blot experiment, Cry1Ac and Cry9Da bound to the same 120-kDa aminopeptidase N (APN) as Cry1Aa. A competition experiment with the ligand blot indicated that the three toxins share the same binding site on several proteins.
View Article and Find Full Text PDFBacillus thuringiensis insecticidal protein, Cry1Aa toxin, binds to a specific receptor in insect midguts and has insecticidal activity. Therefore, the structure of the receptor molecule is probably a key factor in determining the binding affinity of the toxin and insect susceptibility. The cDNA fragment (PX frg1) encoding the Cry1Aa toxin-binding region of an aminopeptidase N (APN) or an APN family protein from diamondback moth, Plutella xylostella midgut was cloned and sequenced.
View Article and Find Full Text PDFArch Insect Biochem Physiol
April 1999
We purified and characterized three structurally related antibacterial peptides with a molecular mass of 8 kDa (acaloleptins A1, A2, and A3) from the hemolymph of immunized larvae of the Udo longicorn beetle, Acalolepta luxuriosa. These peptides have the same 6 N-terminal amino acid residues and show potent antibacterial activity against some Gram-negative bacteria. The three peptides are thought to be isoforms.
View Article and Find Full Text PDFWe recently isolated and characterized the lipopolysaccharide (LPS)-binding protein, BmLBP, from the larval hemolymph of the silkworm Bombyx mori. BmLBP is a pattern recognition molecule that recognizes the lipid A portion of LPS and participates in a cellular defense reaction. This paper describes the cDNA cloning of BmLBP.
View Article and Find Full Text PDFBacillus thuringiensis Cry1Aa toxin binds to a 120 kDa putative receptor protein in the Bombyx mori midgut. Recently, this protein was purified and identified as glycosyl-phosphatidylinositol (GPI) anchored aminopeptidase N (APN). In this study, a full-length cDNA thought to encode this 120 kDa APN was isolated and sequenced.
View Article and Find Full Text PDFCry1Aa toxin-binding proteins from the midgut brush border membrane vesicles of Bombyx mori, a toxin-susceptible silkworm, were analyzed to find candidates for the toxin receptors. Ligand blotting showed that Cry1Aa toxin bound to a 120-kDa protein. A part of the 120-kDa protein was solubilized from the membrane vesicles with phosphatidylinositol-specific phospholipase C, resulting in a 110-kDa protein which therefore may be linked to a glycosyl-phosphatidylinositol anchor.
View Article and Find Full Text PDFFolate sensitive fragile site on chromosome 2q13 was detected in a female proband with mild hypertrichosis, negativism, speech disorder, and severe mental retardation. The same chromosomal aberration was also detected in her mother with normal phenotype. Spontaneous expression of fragile site on 2q13 was also observed.
View Article and Find Full Text PDFJinrui Idengaku Zasshi
June 1974
Jinrui Idengaku Zasshi
August 1971
Am J Obstet Gynecol
February 1971