Publications by authors named "Kadono-Okuda K"

Bombyx mori densovirus 1 (BmDV1) is a pathogen that causes flacherie disease in mulberry silkworms (B. mori). The absolute resistance (non-susceptibility) to BmDV1 of certain silkworm strains is determined independently by two genes, nsd-1 and Nid-1.

View Article and Find Full Text PDF

Scales are symbolic characteristic of Lepidoptera; however, nothing is known about the contribution of cuticular proteins (CPs) to the complex patterning of lepidopteran scales. This is because scales are resistant to solubilization, thus hindering molecular studies. Here we succeeded in dissolving developing wing scales from Bombyx mori, allowing analysis of their protein composition.

View Article and Find Full Text PDF

Silk cocoons obtained from silkworms are the primary source of commercial silk, making the silkworm an economically important insect. However, the silk industry suffers significant losses due to various virus infections. bidensovirus (BmBDV) is one of the pathogens that cause flacherie disease in silkworms.

View Article and Find Full Text PDF

Bombyx mori bidensovirus (BmBDV) is a pathogen that replicates only in the midgut columnar cells of silkworms, causing fatal disease. Resistance to BmBDV, which does not depend on the viral dose, is determined by a single gene, nsd-2 (resistance gene). Previously, we identified nsd-2 by positional cloning using B.

View Article and Find Full Text PDF

Bombyx mori densovirus type 1 (BmDV) is a pathogen that causes flacherie disease in the silkworm. The absolute nonsusceptibility to BmDV among certain silkworm strains is determined independently by two genes, nsd-1 and Nid-1. However, neither of these genes has been molecularly identified to date.

View Article and Find Full Text PDF

The bipartite genome of an Indian isolate of Bombyx mori bidensovirus (BmBDV), one of the causative agents of the fatal silkworm disease 'Flacherie', was cloned and completely sequenced. Nucleotide sequence analysis of this Indian isolate of BmBDV revealed two viral DNA segments, VD1 and VD2 as well as a DNA polymerase motif which supports its taxonomical status as the type species of a new family of Bidnaviridae. The Indian isolate of BmBDV was found to have a total of six putative ORFs four of which were located on the VD1 with the other two being on the VD2 DNA segment.

View Article and Find Full Text PDF

The tobacco cutworm, Spodoptera litura, is among the most widespread and destructive agricultural pests, feeding on over 100 crops throughout tropical and subtropical Asia. By genome sequencing, physical mapping and transcriptome analysis, we found that the gene families encoding receptors for bitter or toxic substances and detoxification enzymes, such as cytochrome P450, carboxylesterase and glutathione-S-transferase, were massively expanded in this polyphagous species, enabling its extraordinary ability to detect and detoxify many plant secondary compounds. Larval exposure to insecticidal toxins induced expression of detoxification genes, and knockdown of representative genes using short interfering RNA (siRNA) reduced larval survival, consistent with their contribution to the insect's natural pesticide tolerance.

View Article and Find Full Text PDF

Most lepidopteran species are herbivores, and interaction with host plants affects their gene expression and behavior as well as their genome evolution. Gustatory receptors (Grs) are expected to mediate host plant selection, feeding, oviposition and courtship behavior. However, due to their high diversity, sequence divergence and extremely low level of expression it has been difficult to identify precisely a complete set of Grs in Lepidoptera.

View Article and Find Full Text PDF

Bombyx mori bidensovirus (BmBDV), which causes fatal flacherie disease in the silkworm, replicates only in midgut columnar cells. The viral resistance expressed by some silkworm strains, which is characterized as non-susceptibility irrespective of the viral dose, is determined by a single gene, nsd-2. We previously identified nsd-2 by positional cloning and found that this gene encodes a putative amino acid transporter that might function as a receptor for BmBDV.

View Article and Find Full Text PDF

Despite more than 40 years of intense study, essential features of the silkmoth chorion (eggshell) are still not fully understood. To determine the precise structure of the chorion locus, we performed extensive EST analysis, constructed a bacterial artificial chromosome (BAC) contig, and obtained a continuous genomic sequence of 871,711 base pairs. We annotated 127 chorion genes in two segments interrupted by a 164 kb region with 5 non-chorion genes, orthologs of which were on chorion bearing scaffolds in 4 ditrysian families.

View Article and Find Full Text PDF

Many lepidopteran insects exhibit body colour variations, where the high phenotypic diversity observed in the wings and bodies of adults provides opportunities for studying adaptive morphological evolution. In the silkworm Bombyx mori, two genes responsible for moth colour mutation, Bm and Ws, have been mapped to 0.0 and 14.

View Article and Find Full Text PDF

The establishment of a complete genomic sequence of silkworm, the model species of Lepidoptera, laid a foundation for its functional genomics. A more complete annotation of the genome will benefit functional and comparative studies and accelerate extensive industrial applications for this insect. To realize these goals, we embarked upon a large-scale full-length cDNA collection from 21 full-length cDNA libraries derived from 14 tissues of the domesticated silkworm and performed full sequencing by primer walking for 11,104 full-length cDNAs.

View Article and Find Full Text PDF

Bombyx mori densovirus type 1 (BmDNV-1) is a pathogen causing flacherie disease in silkworms. BmDNV-1 multiplies only in the nuclei of the columnar cells of larval midgut epithelium. Although several immunohistochemical studies using anti-BmDNV-1 antibody have been reported to date, sequential pathological changes in BmDNV-1-infected larvae have not been completely elucidated.

View Article and Find Full Text PDF

The larval head cuticle and anal plates of the silkworm mutant cheek and tail spot (cts) have chocolate-colored spots, unlike the entirely white appearance of the wild-type (WT) strain. We report the identification and characterization of the gene responsible for the cts mutation. Positional cloning revealed a cts candidate on chromosome 16, designated BmMFS, based on the high similarity of the deduced amino acid sequence between the candidate gene from the WT strain and the major facilitator superfamily (MFS) protein.

View Article and Find Full Text PDF

Bt toxins derived from the arthropod bacterial pathogen Bacillus thuringiensis are widely used for insect control as insecticides or in transgenic crops. Bt resistance has been found in field populations of several lepidopteran pests and in laboratory strains selected with Bt toxin. Widespread planting of crops expressing Bt toxins has raised concerns about the potential increase of resistance mutations in targeted insects.

View Article and Find Full Text PDF

Some organisms are able to survive the loss of almost all their body water content, entering a latent state known as anhydrobiosis. The sleeping chironomid (Polypedilum vanderplanki) lives in the semi-arid regions of Africa, and its larvae can survive desiccation in an anhydrobiotic form during the dry season. To unveil the molecular mechanisms of this resistance to desiccation, an anhydrobiosis-related Expressed Sequence Tag (EST) database was obtained from the sequences of three cDNA libraries constructed from P.

View Article and Find Full Text PDF

Pigmentation patterning has long interested biologists, integrating topics in ecology, development, genetics, and physiology. Wild-type neonatal larvae of the silkworm, Bombyx mori, are completely black. By contrast, the epidermis and head of larvae of the homozygous recessive sex-linked chocolate (sch) mutant are reddish brown.

View Article and Find Full Text PDF

The transport pathway of specific dietary carotenoids from the midgut lumen to the silk gland in the silkworm, Bombyx mori, is a model system for selective carotenoid transport because several genetic mutants with defects in parts of this pathway have been identified that manifest altered cocoon pigmentation. In the wild-type silkworm, which has both genes, Yellow blood (Y) and Yellow cocoon (C), lutein is transferred selectively from the hemolymph lipoprotein to the silk gland cells where it is accumulated into the cocoon. The Y gene encodes an intracellular carotenoid-binding protein (CBP) containing a lipid-binding domain known as the steroidogenic acute regulatory protein-related lipid transfer domain.

View Article and Find Full Text PDF

In silkworms, sex-limited strains are either obtained spontaneously or induced by X-rays or gamma rays. When a fragment of an autosome carrying a dominant allele of those genes responsible for certain characters is translocated onto a W chromosome, the female of the successive generations will express these phenotypic characters and sex discrimination can be facilitated. Gensei-kouken strains are sex-limited strains of silkworms developed by irradiating the pupae with gamma rays, by which a portion of the second chromosome is translocated onto the W chromosome.

View Article and Find Full Text PDF

Yellow proteins form a large family in insects. In Drosophila melanogaster, there are 14 yellow genes in the genome. Previous studies have shown that the yellow gene is necessary for normal pigmentation; however, the roles of other yellow genes in body coloration are not known.

View Article and Find Full Text PDF

Background: The silkworm, Bombyx mori, is one of the most economically important insects in many developing countries owing to its large-scale cultivation for silk production. With the development of genomic and biotechnological tools, B. mori has also become an important bioreactor for production of various recombinant proteins of biomedical interest.

View Article and Find Full Text PDF

In the silkworm Bombyx mori, densovirus type 1 (BmDNV-1) replicates only in the midgut and causes fatal disease. Resistance to BmDNV-1 is determined by two genes, nsd-1 and Nid-1, respectively. Neither of them has been identified yet.

View Article and Find Full Text PDF

In Bombyx mori, there are more than 35 mutant strains whose larval skin color is transparent. The waxy translucent strain ow is one of the oily mutants which lack accumulation of uric acid in the epidermis. Here we performed positional cloning of the ow gene using the Bombyx draft genome sequence.

View Article and Find Full Text PDF

Bombyx mori densovirus type 2 (BmDNV-2), a parvo-like virus, replicates only in midgut columnar cells and causes fatal disease. The resistance expressed in some silkworm strains against the virus is determined by a single gene, nsd-2, which is characterized as nonsusceptibility irrespective of the viral dose. However, the responsible gene has been unknown.

View Article and Find Full Text PDF