Publications by authors named "Kadon K Hintz"

Epidemiological evidence suggests a reduction in the incidence of coronary heart disease, cancer and osteoporosis in populations with a high dietary intake of plant estrogen or phytoestrogen. The clinical benefit of phytoestrogens in cereals, vegetables and medicinal plants is attracting increasing attention for the general public. In the present study, we examined the effect of phytoestrogenic isoflavones daidzein and genistein on glucose toxicity-induced cardiac mechanical malfunction simulating diabetic cardiomyopathy.

View Article and Find Full Text PDF

We recently identified cardiomyocyte dysfunction in the early stage of type 2 diabetes (i.e., diet-induced insulin resistance).

View Article and Find Full Text PDF

Petasites formosanus, an indigenous species of Petasites, has been used to treat cardiovascular diseases such as hypertension for years. We have suggested recently that S-petasin, a major sesquiterpene from P. formosanus, inhibits vascular smooth muscle contraction through inhibition of voltage-dependent Ca(2+) channels, a phenomenon possibly responsible for the hypotensive effect of P.

View Article and Find Full Text PDF

Tetramethylpyrazine (TMP) is the biologically active ingredient isolated from a popular Chinese medicinal plant, Ligusticum wallichil franchat, which has been used effectively since the 1970s to treat ischemic heart disease, cerebrovascular and thrombotic vascular diseases. The direct action of TMP on cardiac contractile function, however, is largely unclear. This study was designed to examine the effect of TMP on ventricular contractile function at the single cardiac myocyte level.

View Article and Find Full Text PDF

1. The sphingolipid ceramide, a primary building block for all other sphingolipids, is associated with growth arrest, apoptosis, and lipotoxic dysfunction. Interestingly, ceramide may attenuate high glucose-induced myocyte dysfunction, produce Ca2+ influx, and augment smooth muscle contraction.

View Article and Find Full Text PDF

Background: Alcoholic cardiomyopathy is manifested as ventricular dysfunction, although its specific toxic mechanism remains obscure. This study was designed to examine the impact of enhanced acetaldehyde exposure on cardiac function via cardiac-specific overexpression of alcohol dehydrogenase (ADH) after alcohol intake.

Methods: ADH transgenic and wild-type FVB mice were placed on a 4% alcohol or control diet for 8 weeks.

View Article and Find Full Text PDF

Background: Erythrocyte-derived depressing factor (EDDF), a novel hypotensive factor purified from human erythrocytes, elicits endothelium-dependent vasorelaxation by reducing intracellular Ca2+ in vascular smooth muscle cells. However, its cardiac response is unknown.

Objective: This study was designed to examine the cardiac contractile response of EDDF under both normotensive and hypertensive conditions.

View Article and Find Full Text PDF

Objective: Cardiac resistance to IGF-1 occurs in diabetes and is attributed to cardiac dysfunction in diabetes. However, the mechanism of action responsible for cardiac IGF-1 resistance is still unknown. This study was designed to examine the impact of high glucose on IGF-1-induced contractile response and activation of serine-threonine kinase Akt as well as extracellular signal-regulated kinase (ERK1/2) in cardiac myocytes.

View Article and Find Full Text PDF

Women with functional ovaries have a lower cardiovascular risk than men and postmenopausal women. However, estrogen replacement therapy remains controversial. This study examined the effect of ovarian hormone deficiency and estrogen replacement on ventricular myocyte contractile function and PKB/Akt activation.

View Article and Find Full Text PDF

Diabetic cardiomyopathy is characterized by impaired ventricular contraction and altered function of insulin-like growth factor I (IGF-I), a key factor for cardiac growth and function. Endogenous IGF-I has been shown to alleviate diabetic cardiomyopathy. This study was designed to evaluate exogenous IGF-I treatment on the development of diabetic cardiomyopathy.

View Article and Find Full Text PDF

Transgenic animals offer many advantages for physiological study. The mouse is the most extensively utilized mammalian model for gene modification. Isolated ventricular myocytes are pivotal for assessment of cardiac function by allowing direct cellular and environmental manipulation without interference from compensatory mechanisms that may exist in vivo.

View Article and Find Full Text PDF

Resistance to insulin-like growth factor I (IGF-1)-induced cardiac contractile response has been reported in diabetes. To evaluate the role of prediabetic insulin resistance to cardiac IGF-1 resistance, whole body insulin resistance was generated with dietary sucrose and contractile function was evaluated in ventricular myocytes. Mechanical properties were evaluated using an IonOptix system and intracellular Ca(2+) transients were measured as changes in fura-2 fluorescence intensity (Delta FFI).

View Article and Find Full Text PDF