The widespread application of silver in consumer products and the resulting contamination of natural environments with silver raise questions about the toxicity of Ag(+) in the ecosystem. Natural organic matter, NOM, which is abundant in water supplies, soil, and sediments, can form stable complexes with Ag(+), altering its bioavailability and toxicity. Herein, the extent and kinetics of Ag(+) binding to NOM, matrix effects on Ag(+) binding to NOM, and the effect of NOM on Ag(+) toxicity to Shewanella oneidensis MR-1 (assessed by the BacLight viability assay) were quantitatively studied with fluorous-phase Ag(+) ion-selective electrodes (ISEs).
View Article and Find Full Text PDFThe colloidal stability of silver nanoparticles (AgNPs) in natural aquatic environments influences their transport and environmental persistence, while their dissolution to Ag(+) influences their toxicity to organisms. Here, we characterize the colloidal stability, dissolution behavior, and toxicity of two industrially relevant classes of AgNPs (i.e.
View Article and Find Full Text PDF