A powerful method in the analysis of datasets where there are many natural clusters with varying statistics such as different sizes, shapes, density distribution, overlaps, etc., is the use of self-organizing maps (SOMs). However, further processing tools, such as visualization and interactive clustering, are often necessary to capture the clusters from the learned SOM knowledge.
View Article and Find Full Text PDFIEEE Trans Neural Netw
March 2010
The self-organizing map (SOM) is a powerful method for manifold learning because of producing a 2-D spatially ordered quantization of a higher dimensional data space on a rigid lattice and adaptively determining optimal approximation of the (unknown) density distribution of the data. However, a postprocessing visualization scheme is often required to capture the data manifold. A recent visualization scheme CONNvis, which is shown effective for clustering, uses a topology representing graph that shows detailed local data distribution within receptive fields.
View Article and Find Full Text PDFIEEE Trans Neural Netw
April 2009
The self-organizing map (SOM) is a powerful method for visualization, cluster extraction, and data mining. It has been used successfully for data of high dimensionality and complexity where traditional methods may often be insufficient. In order to analyze data structure and capture cluster boundaries from the SOM, one common approach is to represent the SOM's knowledge by visualization methods.
View Article and Find Full Text PDF