Synthetic dimensions, wherein dynamics occurs in a set of internal states, have found great success in recent years in exploring topological effects in cold atoms and photonics. However, the phenomena thus far explored have largely been restricted to the non-interacting or weakly interacting regimes. Here, we extend the synthetic dimensions playbook to strongly interacting systems of Rydberg atoms prepared in optical tweezer arrays.
View Article and Find Full Text PDFWe prepare high-filling two-component arrays of tens of fermionic ^{6}Li atoms in optical tweezers, with the atoms in the ground motional state of each tweezer. Using a stroboscopic technique, we configure the arrays in various two-dimensional geometries with negligible Floquet heating. A full spin- and density-resolved readout of individual sites allows us to postselect near-zero entropy initial states for fermionic quantum simulation.
View Article and Find Full Text PDFSynthetic dimensions alter one of the most fundamental properties in nature, the dimension of space. They allow, for example, a real three-dimensional system to act as effectively four-dimensional. Driven by such possibilities, synthetic dimensions have been engineered in ongoing experiments with ultracold matter.
View Article and Find Full Text PDFWe derive effective lattice models for ultracold bosonic or fermionic nonreactive molecules (NRMs) in an optical lattice, analogous to the Hubbard model that describes ultracold atoms in a lattice. In stark contrast to the Hubbard model, which is commonly assumed to accurately describe NRMs, we find that the single on-site interaction parameter U is replaced by a multichannel interaction, whose properties we elucidate. Because this arises from complex short-range collisional physics, it requires no dipolar interactions and thus occurs even in the absence of an electric field or for homonuclear molecules.
View Article and Find Full Text PDFWe use Ramsey spectroscopy to experimentally probe the quantum dynamics of disordered dipolar-interacting ultracold molecules in a partially filled optical lattice, and we compare the results to theory. We report the capability to control the dipolar interaction strength. We find excellent agreement between our measurements of the spin dynamics and theoretical calculations with no fitting parameters, including the dynamics' dependence on molecule number and on the dipolar interaction strength.
View Article and Find Full Text PDFWith the production of polar molecules in the quantum regime, long-range dipolar interactions are expected to facilitate understanding of strongly interacting many-body quantum systems and to realize lattice spin models for exploring quantum magnetism. In ordinary atomic systems, where contact interactions require wavefunction overlap, effective spin interactions on a lattice can be mediated by tunnelling, through a process referred to as superexchange; however, the coupling is relatively weak and is limited to nearest-neighbour interactions. In contrast, dipolar interactions exist even in the absence of tunnelling and extend beyond nearest neighbours.
View Article and Find Full Text PDFRecent theory has indicated how to emulate tunable models of quantum magnetism with ultracold polar molecules. Here we show that present molecule optical lattice experiments can accomplish three crucial goals for quantum emulation, despite currently being well below unit filling and not quantum degenerate. The first is to verify and benchmark the models proposed to describe these systems.
View Article and Find Full Text PDFUltracold fermionic alkaline earth atoms confined in optical lattices realize Hubbard models with internal SU(N) symmetries, where N can be as large as ten. Such systems are expected to harbor exotic magnetic physics at temperatures below the superexchange energy scale. Employing quantum Monte Carlo simulations to access the low-temperature regime of one-dimensional chains, we show that after adiabatically loading a weakly interacting gas into the strongly interacting regime of an optical lattice, the final temperature decreases with increasing N.
View Article and Find Full Text PDFWe study the time scales for adiabaticity of trapped cold bosons subject to a time-varying lattice potential using a dynamic Gutzwiller mean-field theory. We explain apparently contradictory experimental observations by demonstrating a clear separation of time scales for local dynamics (~ ms) and global mass redistribution (~1 s). We provide a simple explanation for the short and fast time scales, finding that while density or energy transport is dominated by low energy phonons, particle-hole excitations set the adiabaticity time for fast ramps.
View Article and Find Full Text PDFWe argue that helium film-mediated hydrogen-hydrogen interactions strongly reduce the magnitude of cold collision shifts in spin-polarized hydrogen adsorbed on a helium film. With plausible assumptions about experimental parameters this can explain (i) the 2 orders of magnitude discrepancy between previous theory and recent experiments and (ii) the anomalous dependence of the cold collision frequency shifts on the film's 3He covering. The mediated interaction is attractive, suggesting that in current experiments the gas will become unstable before reaching the Kosterlitz-Thouless transition.
View Article and Find Full Text PDFThe combination of long-time, tight-binding molecular dynamics and real-time multiresolution analysis techniques reveals the complexity of small silicon interstitial defects. The stability of identified structures is confirmed by ab initio relaxations. The majority of structures were previously unknown, demonstrating the effectiveness of the approach.
View Article and Find Full Text PDF