Publications by authors named "Kaczka D"

Background: Pulmonary microvasculature alterations are implicated in emphysema pathogenesis, but the association between pulmonary microvascular blood volume (PMBV) and emphysema has not been directly assessed at scale, and prior studies have used non-specific measures of emphysema.

Methods: The Multi-Ethnic Study of Atherosclerosis Lung Study invited participants recruited from the community without renal impairment to undergo contrast-enhanced dual-energy CT. Pulmonary blood volume was calculated by material decomposition; PMBV was defined as blood volume in the peripheral 2 cm of the lung.

View Article and Find Full Text PDF

During mechanical ventilation, lung function and gas exchange in structurally heterogeneous lungs may be improved when volume oscillations at the airway opening are applied at multiple frequencies simultaneously, a technique referred to as multifrequency oscillatory ventilation (MFOV). This is in contrast to conventional high-frequency oscillatory ventilation (HFOV), for which oscillatory volumes are applied at a single frequency. In the present study, as a means of fully realizing the potential of MFOV, we designed and tested a computer-controlled hybrid oscillatory ventilator capable of generating the flows, tidal volumes, and airway pressures required for MFOV, HFOV, conventional mechanical ventilation (CMV), as well as oscillometric measurements of respiratory impedance.

View Article and Find Full Text PDF
Article Synopsis
  • APRV (Airway Pressure Release Ventilation) may help protect against lung damage from atelectrauma by limiting the duration of expirations, preventing harmful separation of epithelial surfaces during breathing.
  • A study using a porcine model of ARDS tested different levels of inspiratory pressure and expiration timing to analyze the effects on lung mechanics and resistance post-injury.
  • Results indicated that shorter expirations reduced lung strain during inspiration, suggesting that optimal timing in APRV can enhance lung function recovery after injury.
View Article and Find Full Text PDF

Mechanical ventilation exposes the lung to injurious stresses and strains that can negatively affect clinical outcomes in acute respiratory distress syndrome or cause pulmonary complications after general anesthesia. Excess global lung strain, estimated as increased respiratory system driving pressure, is associated with mortality related to mechanical ventilation. The role of small-dimension biomechanical factors underlying this association and their spatial heterogeneity within the lung are currently unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the importance of lung imaging in diagnosing and managing Acute Respiratory Distress Syndrome (ARDS), highlighting its role despite changes in clinical definitions.
  • Various imaging modalities are outlined, each offering different structural and functional insights into ARDS for clinicians.
  • The review will also cover the pros and cons of each imaging method, focusing on their practical implications for clinical management and decision-making, particularly for respiratory therapists.
View Article and Find Full Text PDF

Backgroud: Lung volume measurements are important for monitoring functional aeration and recruitment and may help guide adjustments in ventilator settings. The expiratory phase of airway pressure release ventilation (APRV) may provide physiologic information about lung volume based on the expiratory flow-time slope, angle, and time to approach a no-flow state (expiratory time [T]). We hypothesized that expiratory flow would correlate with estimated lung volume (ELV) as measured using a modified nitrogen washout/washin technique in a large-animal lung injury model.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LV) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA).

View Article and Find Full Text PDF

Patients with acute respiratory distress syndrome (ARDS) have few treatment options other than supportive mechanical ventilation. The mortality associated with ARDS remains unacceptably high, and mechanical ventilation itself has the potential to increase mortality further by unintended ventilator-induced lung injury (VILI). Thus, there is motivation to improve management of ventilation in patients with ARDS.

View Article and Find Full Text PDF

Introduction: During mechanical ventilation, cyclic recruitment and derecruitment (R/D) of alveoli result in focal points of heterogeneous stress throughout the lung. In the acutely injured lung, the rates at which alveoli can be recruited or derecruited may also be altered, requiring longer times at higher pressure levels to be recruited during inspiration, but shorter times at lower pressure levels to minimize collapse during exhalation. In this study, we used a computational model to simulate the effects of airway pressure release ventilation (APRV) on acinar recruitment, with varying inspiratory pressure levels and durations of exhalation.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is associated with a heterogeneous pattern of injury throughout the lung parenchyma that alters regional alveolar opening and collapse time constants. Such heterogeneity leads to atelectasis and repetitive alveolar collapse and expansion (RACE). The net effect is a progressive loss of lung volume with secondary ventilator-induced lung injury (VILI).

View Article and Find Full Text PDF

The delivery of cell therapies may be an important frontier to treat different respiratory diseases in the near future. However, the cell size, delivery conditions, cell viability, and effect in the pulmonary function are critical factors. We performed a proof-of-concept experiment using lungs and novel subglottic airway device that allows for selective lobar isolation and administration of drugs and biologics in liquid solution deep into the lung tissues, while simultaneously ventilating the rest of the lung lobes.

View Article and Find Full Text PDF

Background: The pulmonary vasculature is essential for gas exchange and impacts both pulmonary and cardiac function. However, it is difficult to assess and its characteristics in the general population are unknown. We measured pulmonary blood volume (PBV) noninvasively using contrast enhanced, dual-energy computed tomography to evaluate its relationship to age and symptoms among older adults in the community.

View Article and Find Full Text PDF

A hallmark of ARDS is progressive shrinking of the 'baby lung,' now referred to as the ventilator-induced lung injury (VILI) 'vortex.' Reducing the risk of the VILI vortex is the goal of current ventilation strategies; unfortunately, this goal has not been achieved nor has mortality been reduced. However, the temporal aspects of a mechanical breath have not been considered.

View Article and Find Full Text PDF

The mammalian lung is characterized by heterogeneity in both its structure and function, by incorporating an asymmetric branching airway tree optimized for maintenance of efficient ventilation, perfusion, and gas exchange. Despite potential benefits of naturally occurring heterogeneity in the lungs, there may also be detrimental effects arising from pathologic processes, which may result in deficiencies in gas transport and exchange. Regardless of etiology, pathologic heterogeneity results in the maldistribution of regional ventilation and perfusion, impairments in gas exchange, and increased work of breathing.

View Article and Find Full Text PDF
Article Synopsis
  • A recent review outlines the technical standards and physiological basis of respiratory oscillometry, highlighting its relevance in clinical settings.
  • Oscillometry is noted for its sensitivity in measuring airway resistance and effectiveness in conditions like asthma and COPD, especially when traditional tests are unsuitable.
  • Despite its promise, further research is necessary to establish its clinical utility for diagnosing and monitoring respiratory diseases.
View Article and Find Full Text PDF

Measurement of respiratory impedance ([Formula: see text]) in intubated patients requires accurate compensation for pressure losses across the endotracheal tube (ETT). In this study, we compared time-domain (TD), frequency-domain (FD) and combined time-/frequency-domain (FT) methods for ETT compensation. We measured total impedance ([Formula: see text]) of a test lung in series with three different ETT sizes, as well as in three intubated porcine subjects.

View Article and Find Full Text PDF

: Intratidal changes in regional lung aeration, as assessed with dynamic four-dimensional computed tomography (CT; 4DCT), may indicate the processes of recruitment and derecruitment, thus portending atelectrauma during mechanical ventilation. In this study, we characterized the time constants associated with deaeration during the expiratory phase of pressure-controlled ventilation in pigs before and after acute lung injury using respiratory-gated 4DCT and image registration. : Eleven pigs were mechanically ventilated in pressure-controlled mode under baseline conditions and following an oleic acid model of acute lung injury.

View Article and Find Full Text PDF

This study reports systematic longitudinal pathophysiology of lung parenchymal and vascular effects of asymptomatic COVID-19 pneumonia in a young, healthy never-smoking male. Inspiratory and expiratory noncontrast along with contrast dual-energy computed tomography (DECT) scans of the chest were performed at baseline on the day of acute COVID-19 diagnosis (), and across a 90-day period. Despite normal vital signs and pulmonary function tests on the day of diagnosis, the CT scans and corresponding quantification metrics detected abnormalities in parenchymal expansion based on image registration, ground-glass (GGO) texture (inflammation) as well as DECT-derived pulmonary blood volume (PBV).

View Article and Find Full Text PDF

Enhanced intrapulmonary gas transport enables oscillatory ventilation modalities to support gas exchange using extremely low tidal volumes at high frequencies. However, it is unknown whether gas transport rates can be improved by combining multiple frequencies of oscillation simultaneously. The goal of this study was to investigate distributed gas transport in vivo during multi-frequency oscillatory ventilation (MFOV) as compared with conventional mechanical ventilation (CMV) or high-frequency oscillatory ventilation (HFOV).

View Article and Find Full Text PDF

For patients with the acute respiratory distress syndrome (ARDS), ventilation strategies that limit end-expiratory derecruitment and end-inspiratory overdistension are the only interventions to have significantly reduced the morbidity and mortality. For this reason, the use of high-frequency oscillatory ventilation (HFOV) was considered to be an ideal protective strategy, given its reliance on very low tidal volumes cycled at very high rates. However, results from clinical trials in adults with ARDS have demonstrated that HFOV does not improve clinical outcomes.

View Article and Find Full Text PDF

Increasingly, quantitative lung computed tomography (qCT)-derived metrics are providing novel insights into chronic inflammatory lung diseases, including chronic obstructive pulmonary disease, asthma, interstitial lung disease, and more. Metrics related to parenchymal, airway, and vascular anatomy together with various measures associated with lung function including regional parenchymal mechanics, air trapping associated with functional small airways disease, and dual-energy derived measures of perfused blood volume are offering the ability to characterize disease phenotypes associated with the chronic inflammatory pulmonary diseases. With the emergence of COVID-19, together with its widely varying degrees of severity, its rapid progression in some cases, and the potential for lengthy post-COVID-19 morbidity, there is a new role in applying well-established qCT-based metrics.

View Article and Find Full Text PDF

The purpose of this study was to develop a fully-automated segmentation algorithm, robust to various density enhancing lung abnormalities, to facilitate rapid quantitative analysis of computed tomography images. A polymorphic training approach is proposed, in which both specifically labeled left and right lungs of humans with COPD, and nonspecifically labeled lungs of animals with acute lung injury, were incorporated into training a single neural network. The resulting network is intended for predicting left and right lung regions in humans with or without diffuse opacification and consolidation.

View Article and Find Full Text PDF