Publications by authors named "Kacskovics I"

Glucocorticoid receptor (GR) activation may promote metastasis in oestrogen receptor-negative and triple-negative breast cancer (TNBC). However, the role of the GRβ isoform, which has opposing effects to the main isoform, has not been studied in clinical samples. We aimed to analyse the intracellular localisation of total GR and GRβ in vitro using plasmid constructs and fluorescent immunocytochemistry.

View Article and Find Full Text PDF

Members of the NOX/DUOX family of NADPH oxidases are responsible for regulated ROS production in diverse cells and tissues. Detection of NOX/DUOX proteins at the protein level remains an important challenge in the field. Here we report the development and characterization of a novel anti-NOX5 monoclonal antibody, which recognizes the human NOX5 protein in both Western blot, immunocytochemistry, and histochemistry applications.

View Article and Find Full Text PDF

The need for sensitive monitoring of minimal/measurable residual disease (MRD) in multiple myeloma emerged as novel therapies led to deeper responses. Moreover, the potential benefits of blood-based analyses, the so-called liquid biopsy is prompting more and more studies to assess its feasibility. Considering these recent demands, we aimed to optimize a highly sensitive molecular system based on the rearranged immunoglobulin (Ig) genes to monitor MRD from peripheral blood.

View Article and Find Full Text PDF

. The dual role of GCs has been observed in breast cancer; however, due to many concomitant factors, GR action in cancer biology is still ambiguous. In this study, we aimed to unravel the context-dependent action of GR in breast cancer.

View Article and Find Full Text PDF

Peroxidasin (PXDN) is involved in the crosslinking of collagen IV, a major constituent of basement membranes. Disruption of basement membrane integrity as observed in genetic alterations of collagen IV or PXDN can result in developmental defects and diverse pathologies. Hence, the study of PXDN activity in (patho)physiological contexts is highly relevant.

View Article and Find Full Text PDF

Mutations in the ABCC6 gene result in calcification diseases such as pseudoxanthoma elasticum or Generalized Arterial Calcification of Infancy. Generation of antibodies recognizing an extracellular (EC) epitope of ABCC6 has been hampered by the short EC segments of the protein. To overcome this limitation, we immunized bovine FcRn transgenic mice exhibiting an augmented humoral immune response with Human Embryonic Kidney 293 cells cells expressing human ABCC6 (hABCC6).

View Article and Find Full Text PDF

The neonatal Fc receptor (FcRn) plays key roles in IgG and albumin homeostasis, maternal IgG transport, and antigen presentation of IgG-opsonized antigens. Previously, we reported that transgenic (Tg) mice that overexpress bovine FcRn (bFcRn) have augmented T-dependent humoral immune response with increased IgG protection, higher level of antigen-specific antibodies, greater number of antigen-specific B cells, and effective immune response even against weakly immunogenic epitopes. In this study we analyzed the diversity of the humoral immune response of bFcRn Tg mice, using a length distribution analysis (spectratyping) and next generation sequencing (NGS) of the immunoglobulin heavy chain variable regions.

View Article and Find Full Text PDF

A specialized neurogenic niche along the ventricles accumulates millions of progenitor cells in the developing brain. After mitosis, fate-committed daughter cells delaminate from this germinative zone. Considering the high number of cell divisions and delaminations taking place during embryonic development, brain malformations caused by ectopic proliferation of misplaced progenitor cells are relatively rare.

View Article and Find Full Text PDF

Background: Store-operated Ca entry (SOCE) through Ca release-activated Ca channels is an essential signaling pathway in many cell types. Ca release-activated Ca channels are formed by ORAI1, ORAI2, and ORAI3 proteins and activated by stromal interaction molecule (STIM) 1 and STIM2. Mutations in the ORAI1 and STIM1 genes that abolish SOCE cause a combined immunodeficiency (CID) syndrome that is accompanied by autoimmunity and nonimmunologic symptoms.

View Article and Find Full Text PDF

Despite the increasing importance of rabbit as an animal model in pharmacological studies like investigating placental transfer of therapeutic IgGs, little is known about the molecular interaction of the rabbit neonatal Fc receptor (FcRn) with rabbit and human IgG molecules. We analyzed the interactions of the rabbit and human FcRn with rabbit and human IgG isotypes using surface plasmon resonance assay. Similar to FcRn of other species, rabbit FcRn functions in pH-dependent manner, as it binds IgGs at pH 6.

View Article and Find Full Text PDF

Store-operated Ca entry (SOCE) through Ca release-activated Ca (CRAC) channels is critical for lymphocyte function and immune responses. CRAC channels are hexamers of ORAI proteins that form the channel pore, but the contributions of individual ORAI homologues to CRAC channel function are not well understood. Here we show that deletion of Orai1 reduces, whereas deletion of Orai2 increases, SOCE in mouse T cells.

View Article and Find Full Text PDF

In recent years, there has been an increasing demand for the development of faster and more efficient technologies for the generation of monoclonal antibodies against challenging targets that are weakly immunogenic or available only in limited amounts. Typical classes of such targets are cell surface antigens such as G-protein related receptors (GPCRs) or ion channels. We have developed transgenic (Tg) mice and rabbits that overexpress the neonatal Fc receptor (FcRn), resulting in an augmented humoral immune response even if challenging antigens are used for immunization.

View Article and Find Full Text PDF

The neonatal Fc receptor (FcRn) plays key roles in IgG and albumin homeostasis, maternal IgG transport, and antigen presentation of IgG-opsonized antigens. Previously, we reported that transgenic (Tg) mice that overexpress the bovine FcRn (bFcRn) have augmented T-dependent humoral immune response with increased IgG protection, higher level of antigen-specific antibodies, greater number of antigen-specific B cells, and effective immune response even against weakly immunogenic epitopes. In the current study, we analyzed the localization of the bFcRn in secondary lymphoid organs, and focused to demonstrate the in vivo impact of its overexpression in the spleen on the course of antibody production.

View Article and Find Full Text PDF

A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell type- and subcellular compartment-specific manner. We developed a new approach to this problem by combining cell-specific physiological and anatomical characterization with super-resolution imaging and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically projecting GABAergic interneurons possessed increased CB1 receptor number, active-zone complexity and receptor/effector ratio compared with dendritically projecting interneurons, consistent with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses.

View Article and Find Full Text PDF

Among the many functions of the neonatal Fc receptor (FcRn) for IgG, it binds to IgG-opsonized antigen complexes and propagates their traffic into lysosomes where antigen processing occurs. We previously reported that transgenic (Tg) mice and rabbits that carry multiple copies and overexpress FcRn have augmented humoral immune responses. Nuclear factor-kappa B (NFκB) is a critical molecule in the signaling cascade in the immune response.

View Article and Find Full Text PDF

Immune suppression with rabbit anti-thymocyte globulin (rATG) is a well-established therapeutic concept for preventing host rejection of transplanted organs and graft versus host disease. Increasing the efficiency of rATG production by reducing the number of animals would be highly beneficial to lower cost and to improve quality standards. We have developed transgenic (Tg) mice and rabbits that overexpress the neonatal Fc receptor (FcRn) and have shown an augmented humoral immune response in these animals.

View Article and Find Full Text PDF

Our previous studies have shown that overexpression of bovine FcRn (bFcRn) in transgenic (Tg) mice leads to an increase in the humoral immune response, characterized by larger numbers of Ag-specific B cells and other immune cells in secondary lymphoid organs and higher levels of circulating Ag-specific antibodies (Abs). To gain additional insights into the mechanisms underlying this increase in humoral immune response, we further characterized the bFcRn Tg mice. Our Western blot analysis showed strong expression of the bFcRn transgene in peritoneal macrophages and bone marrow derived dendritic cells; and a quantitative PCR analysis demonstrated that the expression ratios of the bFcRn to mFcRn were 2.

View Article and Find Full Text PDF

The laboratory rabbit (Oryctolagus cuniculus) is widely used as a model for human diseases, because of its size, which permits non-lethal monitoring of physiological changes and similar disease characteristics. Novel transgenic tools such as, the zinc finger nuclease method and the sleeping beauty transposon mediated or BAC transgenesis were recently adapted to the laboratory rabbit and opened new opportunities in precise tissue and developmental stage specific gene expression/silencing, coupled with increased transgenic efficiencies. Many facets of human development and diseases cannot be investigated in rodents.

View Article and Find Full Text PDF

The neonatal Fc receptor (FcRn) regulates IgG and albumin homeostasis, mediates maternal IgG transport, takes an active role in phagocytosis, and delivers antigen for presentation. We have previously shown that overexpression of FcRn in transgenic mice significantly improves the humoral immune response. Because rabbits are an important source of polyclonal and monoclonal antibodies, adaptation of our FcRn overexpression technology in this species would bring significant advantages.

View Article and Find Full Text PDF

This review illustrates the salutary effects of neonatal Fc receptor (FcRn) overexpression in significantly improving humoral immune responses in the generation of antibodies for immunotherapy and diagnostics. These include: (1) improved IgG protection; (2) augmented antigen-specific humoral immune response with larger numbers of antigen specific B cells, thus offering a wider spectrum of clones; (3) generation of antibodies against weakly immunogenic antigens; (4) significant improvements in the number and substantial developments in the diversity of hybridomas. FcRn transgenesis thus confers a number of practical benefits, including faster antibody production, higher antibody yields and improved generation of hybridomas for monoclonal antibody production.

View Article and Find Full Text PDF

Milk provides nutritional, immunological and developmental components for newborns. Whereas identification of such components has been performed by targeting proteins and free oligosaccharides, structural and functional analyses of the N-glycome of milk glycoproteins are scarce. In this study, we investigated, for the first time, the alterations of the bovine milk N-glycome during early lactation (1 day, 1, 2, 3 and 4 weeks postpartum), characterizing more than 80 N-glycans.

View Article and Find Full Text PDF

The overexpression of the bovine neonatal Fc receptor (bFcRn) in transgenic (Tg) mice boosts humoral immune response with increased numbers of antigen-specific spleen cells and a potent humoral immune response against weakly immunogenic targets. One of the interesting questions surrounding this enhanced immune response is whether these Tg mice generate higher number of antigen-specific hybridomas. To address this question, we immunized these Tg mice and wild type (wt) controls with trinitrophenylated proteins, generated hybridomas and analyzed their numbers and specificities.

View Article and Find Full Text PDF

The neonatal Fc receptor (FcRn) regulates IgG and albumin homeostasis, mediates maternal IgG transport, is active in phagocytosis and delivers antigen for presentation. We have previously shown that transgenic (tg) mice that have been created to overexpress bovine FcRn (bFcRn) demonstrate increased half-life of mouse IgG, significantly increased antigen-specific IgG in serum and augmented expansion of antigen-specific B cells and plasma cells after immunization. One of the interesting questions surrounding this enhanced immune response is whether these tg mice could effectively induce immune response to weakly immunogenic antigens.

View Article and Find Full Text PDF