Publications by authors named "Kachidian P"

Parkinson's disease (PD) is a progressive neurodegenerative disorder whose etiology, besides a minority of genetic cases, is still largely unknown. Animal models have contributed to elucidate PD etiology and pathogenesis, as well as its cellular and molecular mechanisms, leading to the general hypothesis that this neurological disorder is due to complex interactions between environmental and genetic factors. However, the full understanding of PD is still very far from being achieved, and new potential treatments need to be tested to further improve patients' quality of life and, possibly, slow down the neurodegenerative process.

View Article and Find Full Text PDF

In prior studies, we described the differential organization of corticostriatal and thalamostriatal inputs to the spines of direct pathway (dSPNs) and indirect pathway striatal projection neurons (iSPNs) of the matrix compartment. In the present electron microscopic (EM) analysis, we have refined understanding of the relative amounts of cortical axospinous vs. axodendritic input to the two types of SPNs.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by the progressive degeneration of substantia nigra (SN) dopamine neurons, involving a multifactorial cascade of pathogenic events. Here we explored the hypothesis that dysfunction of excitatory amino acid transporters (EAATs) might be involved. Acutely-induced dysfunction of EAATs in the rat SN, by single unilateral injection of their substrate inhibitor l-trans-pyrrolidine-2,4-dicarboxylate (PDC), triggers a neurodegenerative process mimicking several PD features.

View Article and Find Full Text PDF

Rabies virus (RV) has widely been used as a trans-synaptic retrograde tracer to analyze chains of connected neurons. The use of antibodies directed against the viral nucleoprotein enables viral nucleocapsids to be visualized within the cell soma, as well as within the thickest main dendrites. However, through this approach it is often difficult to accurately define post-synaptic elements (thin dendrites and/or dendritic spines).

View Article and Find Full Text PDF

Striatal interneurons play key roles in basal ganglia function and related disorders by modulating the activity of striatal projection neurons. Here we have injected rabies virus (RV) into either the rat substantia nigra pars reticulata or the globus pallidus and took advantage of the trans-synaptic spread of RV to unequivocally identify the interneurons connected to striatonigral- or striatopallidal-projecting neurons, respectively. Large numbers of RV-infected parvalbumin (PV+/RV+) and cholinergic (ChAT+/RV+) interneurons were detected in control conditions, and they showed marked changes following intranigral 6-hydroxydopamine injection.

View Article and Find Full Text PDF

Although currently available retrograde tracers are useful tools for identifying striatal projection neurons, transported tracers often remained restricted within the neuronal somata and the thickest, main dendrites. Indeed, thin dendrites located far away from the cell soma as well as post-synaptic elements such as dendritic spines cannot be labeled unless performing intracellular injections. In this regard, the subsequent use of anterograde tracers for the labeling of striatal afferents often failed to unequivocally elucidate whether a given afferent makes true contacts with striatal projections neurons.

View Article and Find Full Text PDF

Nigral depletion of the main brain antioxidant GSH is the earliest biochemical event involved in Parkinson's disease pathogenesis. Its causes are completely unknown but increasing number of evidence suggests that glutamate transporters [excitatory amino acid transporters (EAATs)] are the main route by which GSH precursors may enter the cell. In this study, we report that dopamine (DA) neurons, which express the excitatory amino acid carrier 1, are preferentially affected by EAAT dysfunction when compared with non-DA neurons.

View Article and Find Full Text PDF

This study examined the cellular changes produced in the striatum by chronic L-DOPA treatment and prolonged subthalamic nucleus high-frequency stimulation (STN-HFS) applied separately, successively, or in association, in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease (PD). Only animals showing severe L-DOPA-induced dyskinesias (LIDs) were included, and STN-HFS was applied for 5 d at an intensity efficient for alleviating akinesia without inducing dyskinesias. L-DOPA treatment alone induced FosB/deltaFosB immunoreactivity, exacerbated the postlesional increase in preproenkephalin, reversed the decrease in preprotachykinin, and markedly increased mRNA levels of preprodynorphin and of the glial glutamate transporter GLT1, which were respectively decreased and unaffected by the dopamine lesion.

View Article and Find Full Text PDF

Inhibition of gamma-secretase, one of the enzymes responsible for the cleavage of the amyloid precursor protein (APP) to produce pathogenic Abeta peptides, is an attractive approach for the treatment of Alzheimer's disease. We designed a gamma-secretase inhibitor bearing an ascorbic acid moiety which allows a specific delivery of the drug to the brain. Through, on the one hand, Abeta peptide production measurements by specific in vitro assays (gamma-secretase cell free assay and cell based assay on HEK 293 APP transfected cells) and on the other hand through pharmacokinetic studies on animal models, the new inhibitor shows a good pharmacokinetic profile as well as a potent gamma-secretase inhibitory activity in vitro.

View Article and Find Full Text PDF

Intralaminar thalamic nuclei represent a major site of non-dopaminergic degeneration in Parkinson disease, but the impact of this degeneration on the pathophysiological functioning of basal ganglia remains unknown. To address this issue, we compared the effects of 6-hydroxydopamine-induced lesions of nigral dopamine neurons alone or combined with ibotenate-induced lesions of intralaminar thalamic neurons on markers of neuronal metabolic activity in the rat basal ganglia using in situ hybridization histochemistry. Thalamic lesions prevented most of the dopamine denervation-induced changes (i.

View Article and Find Full Text PDF

This study examined the effects of unilateral thermocoagulatory cortical lesion on the pattern of neuropeptide Y immunostaining in the rat ipsilateral striatum at 4 and 21 days post-lesion. Light microscopic analysis showed a significant increase in the number of neuropeptide Y-positive neurons vs. control at both time points; paradoxically, the intraneuronal level of labelling significantly decreased at 4 days post-lesion but increased at 21 days post-lesion.

View Article and Find Full Text PDF

Previous studies have shown that the striatum expresses very low levels of Na+/Cl(-)-dependent "orphan" transporter Rxt1 transcripts but contains high levels of protein. This study investigated the origin of Rxt1 expression in rat striatum. Striatal Rxt1 contents assessed by immunocytochemistry or western blotting were found to be significantly reduced after corticostriatal denervation but not after striatal or thalamic lesion with kainic acid or selective 6-hydroxydopamine-induced nigrostriatal deafferentation.

View Article and Find Full Text PDF

This study examined the effects of thalamo-striatal deafferentation on preprotachykinin and preproenkephalin mRNA expression in the rat neostriatum, using quantitative in situ hybridization histochemistry. Unilateral ibotenate-induced intralaminar thalamic lesion produced a significant decrease in preproenkephalin mRNA levels (-27%) restricted to the ipsilateral striatum at 5 days post-lesion. At 12 days post-lesion, significant decreases in striatal preproenkephalin mRNA expression were found on both brain sides.

View Article and Find Full Text PDF

Striatin, a 110-kDa protein, is the first member of the tryptophane-aspartate repeat protein family known to bind calmodulin in the presence of Ca2+. We examined the distribution of striatin and its mRNA in the rat central nervous system (CNS) by using immunocytochemistry and in situ hybridization, respectively. Striatin immunostaining and mRNA labeling patterns are generally concordant.

View Article and Find Full Text PDF

Striatin, a recently isolated rat brain calmodulin-binding protein belonging to the WD-repeat protein family, is thought to be part of a calcium signal transduction pathway presumably specific to excitatory synapses, at least in the striatum. This study was aimed to specify the cellular and subcellular localization of striatin, and to determine the possible synaptic relationships between the two main excitatory afferent pathways, arising from the cerebral cortex and the thalamus, and the striatin-containing elements, in the rat striatum. Anterograde tract-tracing by means of biotinylated dextran amine injection in the frontoparietal cerebral cortex or the parafascicular nucleus of the thalamus was combined with immunogold detection of striatin.

View Article and Find Full Text PDF

This study examined at the ultrastructural level the putative relationships between afferent fibres coming from the parafascicular nucleus of the thalamus and neuropeptide Y (NPY)-containing neurones in the rat striatum. Experiments used a combination of anterograde transport of the biotin dextran amine to label the thalamo-striatal pathway and immunogold labelling to reveal the NPY-containing neurones at the electron microscopic level. Examination of sections from three animals failed to demonstrate thalamic terminals in synaptic contact with NPY-immunoreactive dendrites or cell bodies, although both types of labelled elements were frequently involved in synaptic complex with unlabelled profiles.

View Article and Find Full Text PDF

Catecholamines in the nucleus tractus solitarii (NTS) have been implicated in autonomic responses to circulating hormones that act on neurons in the area postrema, the most caudal circumventricular organ in brain. We combined immunoperoxidase labeling of the anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHAL) with immunogold-silver labeling of tyrosine hydroxylase to determine whether this enzymatic marker for catecholamines was present in efferents from the area postrema or their targets in the rat NTS. At survival periods of 10-12 days after PHAL injections into the area postrema, light microscopy revealed numerous varicose processes containing peroxidase reaction product for PHAL in the dorsomedial, medial, and commissural NTS.

View Article and Find Full Text PDF

By means of dual immunohistochemical labeling on the same brain section examined with a light microscope, the present study reports the presence with serotonin (5-hydroxytryptamine; 5-HT) of gamma-aminobutyric acid (GABA), substance P (SP), thyrotropin-releasing hormone (TRH), leucin-enkephalin (LEU-enk), or methionine-enkephalin (MET-enk), within the same neuron in the nuclei raphe magnus, raphe obscurus, and raphe pallidus of the rat. On the one hand, peptides or GABA are detected with specific rabbit antibodies by indirect peroxidase labeling using peroxidase-conjugated Fab fragments, and on the other, 5-HT is detected with a rabbit antibody against the BSA-serotonin conjugate by radio-immunocytochemistry using [125I]-labeled protein A. The possible coexistence of TRH and SP in these neurons is also investigated by using peroxidase labeling and radio-immunocytochemical detection, respectively.

View Article and Find Full Text PDF

We have developed a double labeling immunocytochemical method utilizing peroxidase conjugated Fab fragments and 125I-labeled protein A to localize two neuronal markers on the same light or electron microscopic section with primary antibodies raised in the same animal species. The technique is applicable to the study of chemical connectivity in the brain, as illustrated by data obtained in the hypothalamus using rabbit polyclonal antisera against tyrosine hydroxylase (TH), phenylethanolamine-N-methyltransferase (PNMT), neuropeptide Y (NPY), and vasoactive intestinal peptide (VIP). Moreover, due to a high level of sensitivity and resolution, the technique offers considerable advantages over many previously developed dual labeling immunocytochemical methods for the demonstration of transmitter axonal co-localizations.

View Article and Find Full Text PDF

One week after a complete spinal cord transection at the thoracic (T8) level in adult rats, a suspension of rhombencephalic embryonic (day 14) cells containing the B1-B2 serotonergic groups was injected below the section. After a survival period of one month, the spinal cord was processed for an ultrastructural dual immunocytochemical detection of serotonin (5-HT) and substance P (SP). It was shown by ultrastructural dual immunolabeling that 5-HT and SP coexist in the same axon terminals of transplanted cells.

View Article and Find Full Text PDF

Dual labelling methods were employed for the electron microscopic detection of glutamate decarboxylase (GAD) immunoreactivity, together with vasoactive intestinal peptide (VIP) or neuropeptide Y (NPY) immunoreactivity in the suprachiasmatic nucleus (SCN) of colchicine pretreated and untreated rats. These methods involved the combined use of diaminobenzidine and benzidine dihydrochloride as distinct chromogens to visualize peroxidase-anti-peroxidase (PAP) immunostaining, and a combination of the PAP procedure with a radioimmunocytochemical method employing 125I-labelled secondary antisera. We were thereby able to demonstrate that gamma-aminobutyric acid (GABA) terminals provide an important afferent synaptic input to VIP neurons.

View Article and Find Full Text PDF

By means of dual immunocytochemistry, synaptic associations between adrenergic terminals and noradrenergic neurons were directly demonstrated in the rat locus ceruleus (LC). It could be estimated that every adrenergic afferent contacts at least one noradrenergic dendrite in the nucleus. An adrenergic innervation of non-noradrenergic targets was also evidenced.

View Article and Find Full Text PDF

Dual labelling methods were applied to localize simultaneously neuropeptide Y (NPY) and glutamate decarboxylase (GAD) immunoreactivities on ultrathin sections of the rat caudate-putamen (CP). By means of a double peroxidase-anti-peroxidase technique, using 3,3'-diaminobenzidine and benzidine dihydrochloride as chromogens in animals with no colchicine pretreatment, GAD immunoreactivity was found to be present in terminals only whereas NPY immunoreactivity was detected in neurons displaying the features of aspiny type cells and processes. With this approach, we observed numerous synaptic associations of the symmetrical type between GAD-immunoreactive (-Ir) axonal boutons and NPY-Ir cell bodies and dendrites.

View Article and Find Full Text PDF

The expression of Calcitonin gene-related peptide (CGRP) has been demonstrated in motoneurons of several species. We have investigated in adult rats the influence of transection of the spinal cord on CGRP immunoreactivity of motoneurons located below the section. Quantitative analysis has been performed with computer-assisted image analysis.

View Article and Find Full Text PDF

The possible relationships between adrenaline-synthesizing neurons and serotoninergic afferent fibers in the nucleus tractus solitarii of the rat were investigated both morphologically and biochemically. Adrenergic elements (cell bodies, dendrites and nerve endings) were detected simultaneously with serotoninergic axonal varicosities in the same electron-microscopic sections by means of combined phenylethanolamine-N-methyltransferase immunocytochemistry and [3H]serotonin-uptake radioautography. Among some 500 serotoninergic varicosities scanned in the areas of significant overlap between the 2 types of labeling, only 3 were directly apposed to an adrenergic process, identified as a dendrite in each case.

View Article and Find Full Text PDF