Publications by authors named "Kachenoura A"

Cardiac vibration signal analysis emerges as a remarkable tool for the diagnosis of heart conditions. Our recent study shows the feasibility of the longitudinal monitoring of chronic heart diseases, particularly heart failure, using a gastric fundus implant. However, cardiac vibration data, captured from the implant, positioned at the gastric fundus, can be highly affected by different noises and artefacts.

View Article and Find Full Text PDF

Objective: This study aims to detect the seizure onset, in childhood absence epilepsy, as early as possible. Indeed, interfering with absence seizures with sensory simulation has been shown to be possible on the condition that the stimulation occurs soon enough after the seizure onset.

Methods: We present four variations (two supervised, two unsupervised) of an algorithm designed to detect the onset of absence seizures from 4 scalp electrodes, and compare their performance with that of a state-of-the-art algorithm.

View Article and Find Full Text PDF
Article Synopsis
  • The paper addresses the challenge of accurately identifying the location and electrical activity of brain sources in epilepsy using EEG recordings due to the complexity of the problem.
  • A new approach using simulation-driven deep learning is proposed, which incorporates a patient-specific model trained on high-resolution EEG simulations and utilizes neural networks to analyze spatial and temporal features.
  • The performance of this method shows significant improvements in dipole localization accuracy compared to existing deep learning and classical techniques, tested on both synthetic and real EEG data from patients with drug-resistant epilepsy.
View Article and Find Full Text PDF

The resolution of the inverse problem of electrocardiography represents a major interest in the diagnosis and catheter-based therapy of cardiac arrhythmia. In this context, the ability to simulate several cardiac electrical behaviors was crucial for evaluating and comparing the performance of inversion methods. For this application, existing models are either too complex or do not produce realistic cardiac patterns.

View Article and Find Full Text PDF

Epilepsy is one of the most common neurological diseases, which can seriously affect the patient's psychological well-being and quality of life. An accurate and reliable seizure prediction system can generate alarm before epileptic seizures to provide patients and their caregivers with sufficient time to take appropriate action. This study proposes an efficient seizure prediction system based on deep learning in order to anticipate the onset of the seizure as early as possible.

View Article and Find Full Text PDF

Background And Purpose: To evaluate the benefit of independent component analysis (ICA)-based models for predicting rectal bleeding (RB) following prostate cancer radiotherapy.

Materials And Methods: A total of 593 irradiated prostate cancer patients were prospectively analyzed for Grade ≥2 RB. ICA was used to extract two informative subspaces (presenting RB or not) from the rectal DVHs, enabling a set of new pICA parameters to be estimated.

View Article and Find Full Text PDF

Efficient gradient search directions for the optimisation of the kurtosis-based deflationary RobustICA algorithm in the case of real-valued data are proposed in this paper. The proposed scheme employs, in the gradient-like algorithm typically used to optimise the considered kurtosis-based objective function, search directions computed from a more reliable approximation of the negentropy than the kurtosis. The proposed scheme inherits the exact line search of the conventional RobustICA for which a good convergence property through a given direction is guaranteed.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is defined as an excessive accumulation of fat in the liver in the absence of excessive drinking of alcohol. Initially considered as benign and self-limited, NAFLD may progress to the malignant stage of non-alcoholic steatohepatitis (NASH) characterized by degenerate hepatocellular ballooning and lobular inflammation. NASH can lead to hepatic fibrosis and ultimately to cirrhosis and hepatocellular carcinoma.

View Article and Find Full Text PDF

Improving the execution time and the numerical complexity of the well-known kurtosis-based maximization method, the RobustICA, is investigated in this paper. A Newton-based scheme is proposed and compared to the conventional RobustICA method. A new implementation using the nonlinear Conjugate Gradient one is investigated also.

View Article and Find Full Text PDF

Goal: Interictal high-frequency oscillations (HFOs [30-600 Hz]) have proven to be relevant biomarkers in epilepsy. In this paper, four categories of HFOs are considered: Gamma ([30-80 Hz]), high-gamma ([80-120 Hz]), ripples ([120-250 Hz]), and fast-ripples ([250-600 Hz]). A universal detector of the four types of HFOs is proposed.

View Article and Find Full Text PDF

This paper addresses the localization of spatially distributed sources from interictal epileptic electroencephalographic data after a tensor-based preprocessing. Justifying the Canonical Polyadic (CP) model of the space-time-frequency and space-time-wave-vector tensors is not an easy task when two or more extended sources have to be localized. On the other hand, the occurrence of several amplitude modulated spikes originating from the same epileptic region can be used to build a space-time-spike tensor from the EEG data.

View Article and Find Full Text PDF

High-density electroencephalographic recordings have recently been proved to bring useful information during the pre-surgical evaluation of patients suffering from drug-resistant epilepsy. However, these recordings can be particularly obscured by noise and artifacts. This paper focuses on the denoising of dense-array EEG data (e.

View Article and Find Full Text PDF

The main challenge in prostate cancer radiotherapy is to deliver the prescribed dose to the clinical target while minimizing the dose to the neighboring organs at risk and thus avoiding subsequent toxicity-related events. With the aim of improving toxicity prediction following prostate cancer radiotherapy, the goal of our work is to propose a new predictive variable computed with independent component analysis to predict late rectal toxicity, and to compare its performance to other models (logistic regression, normal tissue complication probability model and recent principal component analysis approach). Clinical data and dose-volume histograms were collected from 216 patients having received 3D conformal radiation for prostate cancer with at least two years of follow-up.

View Article and Find Full Text PDF

High Frequency Oscillations (HFOs 40-500 Hz), recorded from intracerebral electroencephalography (iEEG) in epileptic patients, are categorized into four distinct sub-bands (Gamma, High-Gamma, Ripples and Fast Ripples). They have recently been used as a reliable biomarker of epileptogenic zones. The objective of this paper is to investigate the possibility of discriminating between the different classes of HFOs which physiological/pathological value is critical for diagnostic but remains to be clarified.

View Article and Find Full Text PDF

As a noninvasive technique, electroencephalography (EEG) is commonly used to monitor the brain signals of patients with epilepsy such as the interictal epileptic spikes. However, the recorded data are often corrupted by artifacts originating, for example, from muscle activities, which may have much higher amplitudes than the interictal epileptic signals of interest. To remove these artifacts, a number of independent component analysis (ICA) techniques were successfully applied.

View Article and Find Full Text PDF

External beam radiotherapy is commonly prescribed for prostate cancer. Although new radiation techniques allow high doses to be delivered to the target, the surrounding healthy organs (rectum and bladder) may suffer from irradiation, which might produce undesirable side-effects. Hence, the understanding of the complex toxicity dose-volume effect relationships is crucial to adapt the treatment, thereby decreasing the risk of toxicity.

View Article and Find Full Text PDF

The understanding of dose/side-effects relationships in prostate cancer radiotherapy is crucial to define appropriate individual's constraints for the therapy planning. Most of the existing methods to predict side-effects do not fully exploit the rich spatial information conveyed by the three-dimensional planned dose distributions. We propose a new classification method for three-dimensional individuals' doses, based on a new semi-nonnegative ICA algorithm to identify patients at risk of presenting rectal bleeding from a population treated for prostate cancer.

View Article and Find Full Text PDF

Objective: We propose a new method for automatic detection of fast ripples (FRs) which have been identified as a potential biomarker of epileptogenic processes.

Methods: This method is based on a two-stage procedure: (i) global detection of events of interest (EOIs, defined as transient signals accompanied with an energy increase in the frequency band of interest 250-600Hz) and (ii) local energy vs. frequency analysis of detected EOIs for classification as FRs, interictal epileptic spikes or artifacts.

View Article and Find Full Text PDF

This study proposes a method to facilitate the remote follow up of patients suffering from cardiac pathologies and treated with an implantable device, by synthesizing a 12-lead surface ECG from the intracardiac electrograms (EGM) recorded by the device. Two methods (direct and indirect), based on dynamic time-delay artificial neural networks (TDNNs) are proposed and compared with classical linear approaches. The direct method aims to estimate 12 different transfer functions between the EGM and each surface ECG signal.

View Article and Find Full Text PDF

A novel Empirical Mode Decomposition (EMD) algorithm, called 2T-EMD, for both mono- and multivariate signals is proposed in this paper. It differs from the other approaches by its computational lightness and its algorithmic simplicity. The method is essentially based on a redefinition of the signal mean envelope, computed thanks to new characteristic points, which offers the possibility to decompose multivariate signals without any projection.

View Article and Find Full Text PDF

An extension of the original implementation of JADE, named eJADE((1)) hereafter, was proposed in 2001 to perform independent component analysis for any combination of statistical orders greater than or equal to three. More precisely, eJADE((1)) relies on the joint diagonalization of a set of several cumulant matrices corresponding to different matrix slices of one or several higher order cumulant tensors. An efficient way, without lose of statistical information, of reducing the number of third and fourth order cumulant matrices to be jointly diagonalized is proposed in this paper.

View Article and Find Full Text PDF

Blind Source Separation (BSS) problems, under the assumption of static mixture, were extensively explored from the theoretical point of view. Powerful algorithms are now at hand to deal with many concrete BSS applications. Nevertheless, the performances of BSS methods, for a given biomedical application, are rarely investigated.

View Article and Find Full Text PDF

This paper deals with the conception of a new system for sleep staging in ambulatory conditions. Sleep recording is performed by means of five electrodes: two temporal, two frontal and a reference. This configuration enables to avoid the chin area to enhance the quality of the muscular signal and the hair region for patient convenience.

View Article and Find Full Text PDF