Publications by authors named "Kaccie Y Li"

Extended depth-of-focus (EDoF) intraocular lenses (IOLs) are typically evaluated using commercially available aberrometers. Given the intricate optical design of these IOLs, employing an appropriate wavefront reconstruction method with a sufficient sampling resolution of the aberrometer is crucial. A high-resolution Shack-Hartmann wavefront sensor was developed by magnifying the pupil aperture by a factor of five onto a lenslet array (pitch: 133 µm) and utilizing a full-frame CMOS sensor (24 by 36 mm), resulting in a 26.

View Article and Find Full Text PDF

Purpose: Adaptive optics scanning laser ophthalmoscopy (AOSLO) under optimized wavefront correction allows for routine imaging of foveal cone photoreceptors. The intersubject variability of foveal cone density was measured and its relation to eye length evaluated.

Methods: AOSLO was used to image 18 healthy eyes with axial lengths from 22.

View Article and Find Full Text PDF

We compared four algorithms for controlling a MEMS deformable mirror of an adaptive optics (AO) scanning laser ophthalmoscope. Interferometer measurements of the static nonlinear response of the deformable mirror were used to form an equivalent linear model of the AO system so that the classic integrator plus wavefront reconstructor type controller can be implemented. The algorithms differ only in the design of the wavefront reconstructor.

View Article and Find Full Text PDF

In making noninvasive measurements of the human cone mosaic, the task of labeling each individual cone is unavoidable. Manual labeling is a time-consuming process, setting the motivation for the development of an automated method. An automated algorithm for labeling cones in adaptive optics (AO) retinal images is implemented and tested on real data.

View Article and Find Full Text PDF

A reliable and objective method to measure aberration changes due to the tear film is essential in improving clinical assessment of the tear film and in vivo retinal imaging. The tear film of 11 subjects are studied by acquiring continuous wavefront measurements in real-time with a customized Shack-Hartmann wavefront sensor. The device has a high resolution lenslet array (190 mum) and a topographer unit with an infrared pupil illuminator (940 nm).

View Article and Find Full Text PDF