Publications by authors named "Kabouridis P"

The enteric nervous system (ENS) coordinates the major functions of the gastrointestinal tract. Its development takes place within a constantly changing environment which, after birth, culminates in the establishment of a complex gut microbiota. How such changes affect ENS development and its subsequent function throughout life is an emerging field of study that holds great interest but which is inadequately explored thus far.

View Article and Find Full Text PDF

Objectives: Osteoarthritis (OA) is a leading cause of disability for which there is no cure. The identification of molecules supporting cartilage homeostasis and regeneration is therefore a major pursuit in musculoskeletal medicine. Agrin is a heparan sulfate proteoglycan which, through binding to low-density lipoprotein receptor-related protein 4 (LRP4), is required for neuromuscular synapse formation.

View Article and Find Full Text PDF

The enteric nervous system (ENS) consists of neurons and glial cells that differentiate from neural crest progenitors. During embryogenesis, development of the ENS is controlled by the interplay of neural crest cell-intrinsic factors and instructive cues from the surrounding gut mesenchyme. However, postnatal ENS development occurs in a different context, which is characterized by the presence of microbiota and an extensive immune system, suggesting an important role of these factors on enteric neural circuit formation and function.

View Article and Find Full Text PDF

The intrinsic neural networks of the gastrointestinal tract are derived from dedicated neural crest progenitors that colonize the gut during embryogenesis and give rise to enteric neurons and glia. Here, we study how an essential subpopulation of enteric glial cells (EGCs) residing within the intestinal mucosa is integrated into the dynamic microenvironment of the alimentary tract. We find that under normal conditions colonization of the lamina propria by glial cells commences during early postnatal stages but reaches steady-state levels after weaning.

View Article and Find Full Text PDF

Agrin is over-expressed by activated and autoimmune T cells, and synergizes with the T cell receptor (TCR) to augment cell activation. In the present study, we show that Agrin accumulates to distinct areas of the plasma membrane and that cell activation causes its redistribution. During antigen presentation, Agrin primarily accumulates to the periphery of the mature immunological synapse, mostly in lamellipodia-like protrusions that wrap around the antigen-presenting cell and, conversely, anti-Agrin sera induced a significant redistribution of TCR at the plasma membrane.

View Article and Find Full Text PDF

We have shown previously that in T cells, LAT co-immunoprecipitates with the active but not the inactive-'closed' form of Lck, and that this interaction impacts negatively on Lck activity. Here we confirm that activation of T cells induced a transient LAT/Lck association within 4 min after stimulation, returning to basal levels by 30 min. Interestingly, autoimmune T cells isolated from patients with systemic lupus erythematosus, which contain a larger pool of active Lck and LAT, exhibited increased LAT/Lck association compared to healthy controls.

View Article and Find Full Text PDF

Agrin plays a crucial role in the maintenance of the neuromuscular junction. However, it is expressed in other tissues as well, including T lymphocytes, where cell activation induces its expression. Agrin from activated T cells has the capacity to induce aggregation of key receptors and to regulate signalling.

View Article and Find Full Text PDF

Background: Intracellular signaling can be regulated by the exogenous addition of physiological protein inhibitors coupled to the TAT protein transduction domain. Thus far experiments have been performed with purified inhibitors added exogenously to cells in vitro or administered in vivo. Production of secretable TAT-fusion proteins by engineered mammalian cells, their uptake, and route of entry has not been thoroughly investigated.

View Article and Find Full Text PDF

We describe the development of cell-penetrating inhibitors of Ras and study their ability to inhibit T cell activation. The inhibitors transduced T cells in a time and concentration-dependent manner and interacted with endogenous Ras. Anti-CD3/CD28-activated cells when treated with the inhibitors, exhibited a notable reduction in cell size, diminished proliferative capacity, and were more prone to apoptosis.

View Article and Find Full Text PDF

Experimental evidence indicates that the mammalian cell membrane is compartmentalized. A structural feature that supports membrane segmentation implicates assemblies of selected lipids broadly referred to as lipid rafts. In T-lymphocytes, lipid rafts are implicated in signalling from the T-cell antigen receptor (TCR) and in localization and function of proteins residing proximal to the receptor.

View Article and Find Full Text PDF

It is shown in this study that the heparan sulfate proteoglycan agrin is overexpressed in T cells isolated from patients with the autoimmune disease systemic lupus erythematosus (SLE). Freshly isolated CD4(+) and CD8(+) subpopulations both exhibited higher expression over healthy controls, which however, gradually declined when cells were cultured in vitro. Agrin expression was induced following in vitro activation of cells via their Ag receptor, or after treatment with IFN-alpha, a cytokine shown to be pathogenic in lupus.

View Article and Find Full Text PDF

Lipid rafts is a blanket term used to describe distinct areas in the plasma membrane rich in certain lipids and proteins and which are thought to perform diverse functions. A large number of studies report on lipid rafts having a key role in receptor signalling and activation of lymphocytes. In T cells, lipid raft involvement was demonstrated in the early steps during T cell receptor (TCR) stimulation.

View Article and Find Full Text PDF

Objective: B lymphocytes from patients with systemic lupus erythematosus (SLE) exhibit defective intracellular signaling, hyperactivity, and autoantibody production. Recent evidence indicates a reduced expression of Lyn kinase, a negative regulator of B cell signaling, and reduced translocation of Lyn into membrane signaling domains in SLE. The present study was undertaken to investigate the causes of this altered regulation of Lyn by assessing the expression levels of regulatory molecules and their translocation into the signaling domains of SLE B lymphocytes.

View Article and Find Full Text PDF

The molecular events and the protein components that are involved in signalling by the T cell receptor (TCR) for antigen have been extensively studied. Activation of signalling cascades following TCR stimulation depends on the phosphorylation of the receptor by the tyrosine kinase Lck, which localizes to the cytoplasmic face of the plasma membrane by virtue of its post-translational modification. However, the precise order of events during TCR phosphorylation at the plasma membrane, remains to be defined.

View Article and Find Full Text PDF

Objective: B lymphocytes from patients with systemic lupus erythematosus (SLE) are hyperactive and produce anti-double-stranded DNA (anti-dsDNA) autoantibodies. The cause or causes of B cell defects in SLE are unknown. In this study, we determined the level and subcellular distribution of Lyn protein, a key negative regulator of B cell receptor signaling, and assessed whether altered Lyn expression is characteristic of B cells in the setting of SLE.

View Article and Find Full Text PDF

For many types of cells, an increase in cell density leads to characteristic changes in intracellular signalling and cell function. It is unknown, however, whether cell density affects the function of T lymphocytes. It is presented here that aggregation of Jurkat T cells, murine thymocytes or human peripheral blood T cells, results in gradual modification of the Lck tyrosine kinase.

View Article and Find Full Text PDF

There is now considerable evidence suggesting that the plasma membrane of mammalian cells is compartmentalized by functional lipid raft microdomains. These structures are assemblies of specialized lipids and proteins and have been implicated in diverse biological functions. Analysis of their protein content using proteomics and other methods revealed enrichment of signalling proteins, suggesting a role for these domains in intracellular signalling.

View Article and Find Full Text PDF

Objective: NF-kappaB activation is associated with several inflammatory disorders, including rheumatoid arthritis (RA), making this family of transcription factors a good target for the development of antiinflammatory treatments. Although inhibitors of the NF-kappaB pathway are currently available, their specificity has not been adequately determined. IkappaBalpha is a physiologic inhibitor of NF-kappaB and a potent repressor experimentally when expressed in a nondegradable form.

View Article and Find Full Text PDF

In the last few years it has become clear that in cells of the immune system, specialized microdomains present in the plasma membrane, called lipid rafts, have been found to play a central role in regulating signalling by immune receptors. Recent studies have looked at whether lipid rafts may be connected to the abnormalities in signalling seen in T lymphocytes isolated from patients with systemic lupus erythematosus (SLE). These early findings show that in SLE T cells, the expression and protein composition of lipid rafts is different when compared with normal T cells.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is characterized by abnormalities in T lymphocyte receptor-mediated signal transduction pathways. Our previous studies have established that lymphocyte-specific protein tyrosine kinase (LCK) is reduced in T lymphocytes from patients with SLE and that this reduction is associated with disease activity and parallels an increase in LCK ubiquitination independent of T cell activation. This study investigated the expression of molecules that regulate LCK homeostasis, such as CD45, C-terminal Src kinase (CSK), and c-Cbl, in lipid raft domains from SLE T cells and investigated the localization of these proteins during T cell receptor (TCR) triggering.

View Article and Find Full Text PDF

The impermeable nature of the cell membrane to peptides, proteins, DNA and oligonucleotides limits the therapeutic potential of these biological agents. However, the recent discovery of short cationic peptides that cross the plasma membrane efficiently is opening up new possibilities for the intracellular delivery of such agents. These peptides are commonly referred to as protein transduction domains (PTDs) and are successfully used to transport heterologous proteins, peptides and other types of cargo into cells.

View Article and Find Full Text PDF

Objective: To explore regulation of proximal signaling and composition of lipid rafts in T lymphocytes from patients with systemic lupus erythematosus (SLE).

Methods: The expression, phosphorylation, and degradation of lipid raft-associated signaling molecules in T lymphocytes from 50 patients with SLE compared with 28 healthy controls and 22 rheumatoid arthritis patients were investigated. Lipid raft and nonraft fractions from T cells were isolated by ultracentrifugation.

View Article and Find Full Text PDF

In T cells, the lipid raft-associated Lck is strongly tyrosine phosphorylated and has reduced enzymic activity in contrast with the detergent-soluble pool, which has substantial activity. Lck tagged at the C-terminus (Lck/V5-His) was efficiently captured by epitope-specific reagents from the detergent-soluble fraction but not from lipid rafts. Binding was restored following urea denaturation, suggesting that Lck/V5-His is in a 'closed' conformation in these domains.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) and osteoarthritis (OA) are polygenic diseases. Polymorphisms in candidate genes have been studied for possible association with susceptibility to disease development. Aside from HLA polymorphisms, of particular interest are those in genes encoding cytokines, signaling molecules, and enzymes involved in the production and catabolism of oxygen and nitrogen radicals.

View Article and Find Full Text PDF

The transcription factor NF-kappaB is regulated by the IkappaB family of proteins. The nonphosphorylatable, nondegradable superrepressor IkappaBalpha (srIkappaBalpha) mutant is a potent inhibitor of NF-kappaB activity when expressed in cells. We generated a form of srIkappaBalpha in which its N terminus is fused to the protein transduction domain of HIV TAT (TAT-srIkappaBalpha).

View Article and Find Full Text PDF