Publications by authors named "Kabitzke P"

While high risk of failure is an inherent part of developing innovative therapies, it can be reduced by adherence to evidence-based rigorous research practices. Supported through the European Union's Innovative Medicines Initiative, the EQIPD consortium has developed a novel preclinical research quality system that can be applied in both public and private sectors and is free for anyone to use. The EQIPD Quality System was designed to be suited to boost innovation by ensuring the generation of robust and reliable preclinical data while being lean, effective and not becoming a burden that could negatively impact the freedom to explore scientific questions.

View Article and Find Full Text PDF
Article Synopsis
  • Traumatic brain injury (TBI) is a complex condition with varying causes and effects, making it difficult for researchers to achieve consistent results in both pre-clinical and clinical settings.
  • To tackle this issue, TBI research groups created 913 common data elements (CDEs) that standardize experimental parameters, animal characteristics, and injury models, aimed at improving data consistency and analysis across studies.
  • An analysis of combined legacy datasets revealed significant missing data issues, with around 35% missing values in the Morris water maze and 33% in the Rotarod experiments, highlighting the challenges yet to be overcome in harmonizing research efforts.
View Article and Find Full Text PDF

Phenotyping mouse model systems of human disease has proven to be a difficult task, with frequent poor inter- and intra-laboratory replicability, particularly in behavioral domains such as social and cognitive function. However, establishing robust animal model systems with strong construct validity is of fundamental importance as they are central tools for understanding disease pathophysiology and developing therapeutics. To complete our studies of mouse model systems relevant to autism spectrum disorder (ASD), we present a replication of the main findings from our two published studies of five genetic mouse model systems of ASD.

View Article and Find Full Text PDF

This chapter explores existing data reproducibility and robustness initiatives from a cross-section of large funding organizations, granting agencies, policy makers, journals, and publishers with the goal of understanding areas of overlap and potential gaps in recommendations and requirements. Indeed, vigorous stakeholder efforts to identify and address irreproducibility have resulted in the development of a multitude of guidelines but with little harmonization. This likely results in confusion for the scientific community and may pose a barrier to strengthening quality standards instead of being used as a resource that can be meaningfully implemented.

View Article and Find Full Text PDF

To expand, analyze and extend published behavioral phenotypes relevant to autism spectrum disorder (ASD), we present a study of three ASD genetic mouse models: Feng's Shank3 model, hereafter Shank3/F, Jiang's Shank3 model, hereafter Shank3/J and the Cacna1c deletion model. The Shank3 models mimick gene mutations associated with Phelan-McDermid Syndrome and the Cacna1c model recapitulates the deletion underlying Timothy syndrome. This study utilizes both standard and novel behavioral tests with the same methodology used in our previously published companion report on the Cntnap2 null and 16p11.

View Article and Find Full Text PDF

We examined the neural substrates of fear memory formation and maintenance when repeated recall was used to prevent forgetting in young animals. In contrast to adult rats, juveniles failed to show contextual fear responses at 4 d post-fear conditioning. Reconsolidation sessions 3 and 6 d after conditioning restored contextual fear responses in juveniles 7 d after initial training.

View Article and Find Full Text PDF

Autism spectrum disorder comprises several neurodevelopmental conditions presenting symptoms in social communication and restricted, repetitive behaviors. A major roadblock for drug development for autism is the lack of robust behavioral signatures predictive of clinical efficacy. To address this issue, we further characterized, in a uniform and rigorous way, mouse models of autism that are of interest because of their construct validity and wide availability to the scientific community.

View Article and Find Full Text PDF

Impairments in social behavior characterize many neurodevelopmental psychiatric disorders. In fact, the temporal emergence and trajectory of these deficits can define the disorder, specify their treatment and signal their prognosis. The sophistication of mouse models with neurobiological endophenotypes of many aspects of psychiatric diseases has increased in recent years, with the necessity to evaluate social behavior in these models.

View Article and Find Full Text PDF

To survive, all mammalian species must recognize and respond appropriately to threatening stimuli. In adults, the prelimbic medial prefrontal cortex (mPFC) appears to be involved in fear expression, whereas the infralimbic mPFC mediates fear extinction. In juvenile rats (PN26), the mPFC receives information on potential predators but does not act on it.

View Article and Find Full Text PDF

Predator odors induce unconditioned fear in the young animal and provide the opportunity to study the mechanisms underlying unlearned and learned fear. In the current study, cat odor produced unlearned, innate fear in infant (postnatal age 14; PN14) and juvenile (PN26) rats, but contextual fear learning occurred only in juveniles. It was hypothesized that contextual fear learning in juveniles is mediated by norepinephrine.

View Article and Find Full Text PDF

In adult animals, the medial prefrontal cortex (mPFC) plays a significant role in regulating emotions and projects to the amygdala and periaqueductal gray (PAG) to modulate emotional responses. However, little is known about the development of this neural circuit and its relevance to unlearned fear in pre-adulthood. To address these issues, we examined the mPFC of 14-d-old (infants), 26-d-old (juveniles), and 38- to 42-d-old (adolescents) rats to represent different developmental and social milestones.

View Article and Find Full Text PDF

Predator odors have been found to induce unconditioned fear in adult animals and provide the opportunity to study the mechanisms underlying unlearned and learned fear. Predator threats change across an animal's lifetime, as do abilities that enable the animal to learn or engage in different defensive behaviors. Thus, the objective of this study was to determine the combination of factors that successfully induce unlearned fear to predator odor across development.

View Article and Find Full Text PDF