Publications by authors named "Kabeer Raza"

Reliable and cost-effective glucose sensors are in rising demand among diabetes patients. The combination of metals and conducting polymers creates a robust electrocatalyst for glucose oxidation, offering enzyme-free, high stability, and sensitivity with outstanding electrochemical results. Herein, graphene is grown on nickel foam by chemical vapor deposition to make a graphene@nickel foam scaffold (G@NF), on which silver nanoplates-polyaniline (Ag-PANI) 3D architecture is developed by sonication-assisted co-electrodeposition.

View Article and Find Full Text PDF

Polysulphone (PSU) composites with carbon nanotubes (PSU-CNT) and graphene nanoplatelets (PSU-GNP) were developed through the solution casting process, using various weight load percentages of 1, 3, 5, and 10 wt% of CNT and GNP nanofillers. The microstructural and thermal properties of the PSU-based composites were compared. The microstructural characterisation of both composites (PSU-CNTs and PSU-GNPs) showed a strong matrix-filler interfacial interaction and uniform dispersion of CNTs and GNPs in the PSU matrix.

View Article and Find Full Text PDF

A computational design methodology is reported to propose a high-performance composite for backside encapsulation of concentrated photovoltaic (CPV) systems for enhanced module life and electrical power. Initially, potential polymer composite systems that are expected to provide the target properties, such as thermal conductivity, coefficient of thermal expansion, and long-term shear modulus are proposed using in-house built design codes. These codes are based on differential effective medium theory and mean-field homogenization, which lead to the selection of matrix, filler, volume fractions, and type of particulates.

View Article and Find Full Text PDF

Copper/diamond (Cu/D) composites are famous in thermal management applications for their high thermal conductivity values. They, however, offer some interface related problems like high thermal boundary resistance and excessive debonding. This paper investigates interfacial debonding in Cu/D composites subjected to steady-state and transient thermal cyclic loading.

View Article and Find Full Text PDF