Publications by authors named "Kaarsholm N"

We have identified a series of novel insulin receptor partial agonists (IRPAs) with a potential to mitigate the risk of hypoglycemia associated with the use of insulin as an antidiabetic treatment. These molecules were designed as dimers of native insulin connected via chemical linkers of variable lengths with optional capping groups at the N-terminals of insulin chains. Depending on the structure, the maximal activation level (%Max) varied in the range of ∼20-70% of native insulin, and EC values remained in sub-nM range.

View Article and Find Full Text PDF

The goal of this investigation was to examine clinical translation of glucose responsiveness of MK-2640, which is a novel insulin saccharide conjugate that can bind the insulin receptor or mannose receptor C type 1 (MRC1), the latter dependent upon glucose concentration. In a rising dose study in 36 healthy adults under euglycemic clamp conditions, rising exposures revealed saturation of MK-2640 clearance, likely due to saturation of clearance by MRC1. Potency of MK-2640 was ~25-fold reduced relative to regular human insulin.

View Article and Find Full Text PDF

We evaluated the hepatic and nonhepatic responses to glucose-responsive insulin (GRI). Eight dogs received GRI or regular human insulin (HI) in random order. A primed, continuous intravenous infusion of [3-H]glucose began at -120 min.

View Article and Find Full Text PDF

Insulin has a narrow therapeutic index, reflected in a small margin between a dose that achieves good glycemic control and one that causes hypoglycemia. Once injected, the clearance of exogenous insulin is invariant regardless of blood glucose, aggravating the potential to cause hypoglycemia. We sought to create a "smart" insulin, one that can alter insulin clearance and hence insulin action in response to blood glucose, mitigating risk for hypoglycemia.

View Article and Find Full Text PDF

Chromatographic and non-chromatographic purification of biopharmaceuticals depend on the interactions between protein molecules and a solid-liquid interface. These interactions are dominated by the protein-surface properties, which are a function of protein sequence, structure, and dynamics. In addition, protein-surface properties are critical for in vivo recognition and activation, thus, purification strategies should strive to preserve structural integrity and retain desired pharmacological efficacy.

View Article and Find Full Text PDF

3-Nitro-4-hydroxybenzoate (3N4H) is a probe of the structure and dynamics of the metal-centered His B10 assembly sites of the insulin hexamer. Each His B10 site consists of a approximately 12 A-long cavity situated on the threefold symmetry axis. These sites play an important role in the storage and release of insulin in vivo.

View Article and Find Full Text PDF

Glucoamylase 1 (GA1) from Aspergillus niger is a multidomain starch hydrolysing enzyme that consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated linker. The fungus also produces a truncated form without the starch-binding domain (GA2). The active site mutant Trp(52)-->Phe of both forms and the Asp(55)-->Val mutant of the GA1 form have been prepared and physicochemically characterised and compared to recombinant wild-type enzymes.

View Article and Find Full Text PDF

Adaptation to efficient heterologous expression is a prerequisite for recombinant proteins to fulfill their clinical and biotechnological potential. We describe a rational strategy to optimize the secretion efficiency in yeast of an insulin precursor by structure-based engineering of the folding stability. The yield of a fast-acting insulin analogue (Asp(B28)) expressed in yeast was enhanced 5-fold by engineering a specific interaction between an aromatic amino acid in the connecting peptide and a phenol binding site in the hydrophobic core of the molecule.

View Article and Find Full Text PDF

Hexameric insulin is an allosteric protein that undergoes transitions between three conformational states (T(6), T(3)R(3), and R(6)). These allosteric states are stabilized by the binding of ligands to the phenolic pockets and by the coordination of anions to the His B10 metal sites. Raman difference (RD) spectroscopy is utilized to examine the binding of phenolic ligands and the binding of thiocyanate, p-aminobenzoic acid (PABA), or 4-hydroxy-3-nitrobenzoic acid (4H3N) to the allosteric sites of T(3)R(3) and R(6).

View Article and Find Full Text PDF

Small molecules with insulin mimetic effects and oral availability are of interest for potential substitution of insulin injections in the treatment of diabetes. We have searched databases for compounds capable of mimicking one epitope of the insulin molecule known to be involved in binding to the insulin receptor (IR). This approach identifies thymolphthalein, which is an apparent weak agonist that displaces insulin from its receptor, stimulates auto- and substrate phosphorylation of IR, and potentiates lipogenesis in adipocytes in the presence of submaximal concentrations of insulin.

View Article and Find Full Text PDF

Aggregation and fibrillation of beta(2)-microglobulin are hallmarks of dialysis-related amyloidosis. We characterize perturbations of the native conformation of beta(2)-microglobulin that may precede fibril formation. For a beta(2)-microglobulin variant cleaved at lysine 58, we show using capillary electrophoresis that two conformers spontaneously exist in aqueous buffers at neutral pH.

View Article and Find Full Text PDF

Within the class of insulin and insulin-like growth factor receptors, detailed information about the molecular recognition event at the hormone-receptor interface is limited by the absence of suitable co-crystals. We describe the use of a biologically active insulin derivative labeled with the NBD fluorophore (B29NBD-insulin) to characterize the mechanism of reversible 1:1 complex formation with a fragment of the insulin receptor ectodomain. The accompanying 40 % increase in the fluorescence quantum yield of the label provides the basis for a dynamic study of the hormone-receptor binding event.

View Article and Find Full Text PDF

Intracellular proteins are frequently modified by covalent addition of lipid moieties such as myristate. Although a functional role of protein lipidation is implicated in diverse biological processes, only a few examples exist where the structural basis for the phenomena is known. We employ the insulin molecule as a model to evaluate the detailed structural effects induced by myristoylation.

View Article and Find Full Text PDF

Studies of naturally occuring and chemically modified insulins have established that the NH2-terminal helix of the A-chain is important in conferring affinity in insulin-receptor interactions. Nevertheless, the three-dimensional structural basis for these observations has not previously been studied in detail. To correlate structure and function in this region of the molecule, we have used the solution structure of an engineered monomer (GluB1, GluB10, GluB16, GluB27, desB30)-insulin (4E insulin) as a template for design of A-chain mutants associated with enhanced or greatly diminished affinity for the insulin receptor.

View Article and Find Full Text PDF

The positive and negative cooperativity and apparent half-site reactivity of the Co(II)-substituted insulin hexamer are well-described by a three-state allosteric model involving ligand-mediated interconversions between the three states: T3T3' right harpoon over left harpoon T3o R3o right harpoon over left harpoon R3R3' [Bloom, C. R., Heymann, R.

View Article and Find Full Text PDF

Despite years of effort to clarify the structural basis of insulin receptor binding no clear consensus has emerged. It is generally believed that insulin receptor binding is accompanied by some degree of conformational change in the carboxy-terminal of the insulin B-chain. In particular, while most substitutions for PheB24 lead to inactive species, glycine or D-amino acids are well tolerated in this position.

View Article and Find Full Text PDF

The nature of cooperative allosteric interactions has been the source of controversy since the ground-breaking studies of oxygen binding to hemoglobin. Until recently, quantitative examples of a model based on the inherent symmetry and asymmetry of oligomeric proteins have been lacking. This laboratory has used the phenolic ligand binding characteristics of the insulin hexamer to develop the first quantitative model for a symmetry-asymmetry-based cooperativity mechanism.

View Article and Find Full Text PDF

The binding of phenolic ligands to the insulin hexamer occurs as a cooperative allosteric process. Investigations of the allosteric mechanism from this laboratory resulted in the postulation of a model consisting of a three-state conformational equilibrium and the derivation of a mathematical expression to describe the insulin system. The proposed mechanism involves allosteric transitions among two states of high symmetry, designated T3T3' (a low affinity state) and R3R3' (a high affinity state), and a third state of lower symmetry, designated T3oR3o (a state of mixed low and high affinities).

View Article and Find Full Text PDF

The insulin hexamer is an allosteric protein capable of undergoing transitions between three conformational states: T6, T3R3, and R6. These transitions are mediated by the binding of phenolic compounds to the R-state subunits, which provide positive homotropic effects, and by the coordination of anions to the bound metal ions, which act as heterotropic effectors. Since the insulin monomer is far more susceptible than the hexamer to thermal, mechanical, and chemical degradation, insulin-dependent diabetic patients rely on pharmaceutical preparations of the Zn-insulin hexamer, which act as stable forms of the biologically active monomeric insulin.

View Article and Find Full Text PDF

Magnetic circular dichroism (MCD) spectra of a series of adducts formed by the Co(II)-substituted R-state insulin hexamer are reported. The His-B10 residues in this hexamer form tris imidazole chelates in which pseudotetrahedral Co(II) centers are completed by an exogenous fourth ligand. This study investigates how the MCD signatures of the Co(II) center in this unit are influenced by the chemical and steric characteristics of the fourth ligand.

View Article and Find Full Text PDF

The insulin hexamer is an allosteric protein exhibiting both positive and negative cooperative homotropic interactions and positive cooperative heterotropic interactions (C. R. Bloom et al.

View Article and Find Full Text PDF

Insulin circulates in the bloodstream and binds to its specific cell-surface receptor as a 5808 Da monomeric species. However, studies of the monomer structure and dynamics in solution are severely limited by insulin self-association into dimers and higher oligomers. In the present work we use site-directed mutagenesis of the dimer- and hexamer-forming surfaces to yield the first insulin species amenable for structure determination at neutral pH by nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

By using ultra-violet and visible absorbance in conjunction with high field 1H-nuclear magnetic resonance spectroscopy, the insulin hexamer has been shown to undergo two allosteric transitions in solution involving three allosteric states (T6<-->T3 R3<-->R6). A simple mathematical model consisting of four variables has been derived that quantitatively describes the complex homotropic and heterotropic interactions that modulate these allosteric transitions. The mutation of one residue, Glu-B13 to Gln, results in an unexpected change in the T3R3 to R6 equilibrium by a factor of 10(7).

View Article and Find Full Text PDF