The emergence of the Göttingen minipig in research of topics such as neuroscience, toxicology, diabetes, obesity, and experimental surgery reflects the close resemblance of these animals to human anatomy and physiology (1-6).The size of the Göttingen minipig permits the use of surgical equipment and advanced imaging modalities similar to those used in humans (6-8). The aim of this instructional video is to increase the awareness on the value of minipigs in biomedical research, by demonstrating how to perform tracheal intubation, transurethral bladder catheterization, femoral artery and vein catheterization, as well as transcardial perfusion.
View Article and Find Full Text PDFThe microscopic organization of the Göttingen minipig (sus scrofa) hypothalamus was studied using Nissl stain, acetylcholinesterase histochemistry, and immunohistochemical staining for calretinin, tyrosin hydroxylase, oxytocin, vasopressin, and orexin A. Mediolaterally the minipig hypothalamus can be divided into three cytoarchitectonic distinct longitudinal zones. The periventricular longitudinal zone comprises the supraoptic, paraventricular, median preoptic, anteroventral periventricular, suprachiasmatic and arcuate nuclei.
View Article and Find Full Text PDFWe present a stereotaxic procedure enabling MRI-guided isocentric stereotaxy in pigs. The procedure is based on the Leksell stereotaxic arch principle, and a stereotaxic localizer box with an incorporated fiducial marking system (sideplates) defining a stereotaxic space similar to the clinical Leksell system. The obtained MRIs can be imported for 3D-reconstruction and coordinate calculation in the clinical stereotaxic software planning system (Leksell SurgiPlan, Elekta AB, Sweden).
View Article and Find Full Text PDF