Publications by authors named "Kaanan P Shah"

Genomic analysis of paired tumor-normal samples and clinical data can be used to match patients to cancer therapies or clinical trials. We analyzed 500 patient samples across diverse tumor types using the Tempus xT platform by DNA-seq, RNA-seq and immunological biomarkers. The use of a tumor and germline dataset led to substantial improvements in mutation identification and a reduction in false-positive rates.

View Article and Find Full Text PDF

Purpose: Diabetic retinopathy is the most common eye complication in patients with diabetes. The purpose of this study is to identify genetic factors contributing to severe diabetic retinopathy.

Methods: A genome-wide association approach was applied.

View Article and Find Full Text PDF

Scalable, integrative methods to understand mechanisms that link genetic variants with phenotypes are needed. Here we derive a mathematical expression to compute PrediXcan (a gene mapping approach) results using summary data (S-PrediXcan) and show its accuracy and general robustness to misspecified reference sets. We apply this framework to 44 GTEx tissues and 100+ phenotypes from GWAS and meta-analysis studies, creating a growing public catalog of associations that seeks to capture the effects of gene expression variation on human phenotypes.

View Article and Find Full Text PDF

Purpose: Retinitis pigmentosa (RP) is a genetically heterogeneous inherited retinal dystrophy. To date, over 80 genes have been implicated in RP. However, the disease demonstrates significant locus and allelic heterogeneity not entirely captured by current testing platforms.

View Article and Find Full Text PDF

Understanding the genetic architecture of gene expression traits is key to elucidating the underlying mechanisms of complex traits. Here, for the first time, we perform a systematic survey of the heritability and the distribution of effect sizes across all representative tissues in the human body. We find that local h2 can be relatively well characterized with 59% of expressed genes showing significant h2 (FDR < 0.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have identified thousands of variants robustly associated with complex traits. However, the biological mechanisms underlying these associations are, in general, not well understood. We propose a gene-based association method called PrediXcan that directly tests the molecular mechanisms through which genetic variation affects phenotype.

View Article and Find Full Text PDF

Mammographic density measures adjusted for age and body mass index (BMI) are heritable predictors of breast cancer risk, but few mammographic density-associated genetic variants have been identified. Using data for 10,727 women from two international consortia, we estimated associations between 77 common breast cancer susceptibility variants and absolute dense area, percent dense area and absolute nondense area adjusted for study, age, and BMI using mixed linear modeling. We found strong support for established associations between rs10995190 (in the region of ZNF365), rs2046210 (ESR1), and rs3817198 (LSP1) and adjusted absolute and percent dense areas (all P < 10(-5)).

View Article and Find Full Text PDF

Mammographic density reflects the amount of stromal and epithelial tissues in relation to adipose tissue in the breast and is a strong risk factor for breast cancer. Here we report the results from meta-analysis of genome-wide association studies (GWAS) of three mammographic density phenotypes: dense area, non-dense area and percent density in up to 7,916 women in stage 1 and an additional 10,379 women in stage 2. We identify genome-wide significant (P<5 × 10(-8)) loci for dense area (AREG, ESR1, ZNF365, LSP1/TNNT3, IGF1, TMEM184B and SGSM3/MKL1), non-dense area (8p11.

View Article and Find Full Text PDF

Owing to recent advances in DNA sequencing, it is now technically feasible to evaluate the contribution of rare variation to complex traits and diseases. However, it is still cost prohibitive to sequence the whole genome (or exome) of all individuals in each study. For quantitative traits, one strategy to reduce cost is to sequence individuals in the tails of the trait distribution.

View Article and Find Full Text PDF

Brain atrophy measured by MRI is an important correlate with clinical disability and disease duration in multiple sclerosis (MS). Unfortunately, neuropathologic mechanisms which lead to this grey matter atrophy remain unknown. The objective of this study was to determine whether brain atrophy occurs in the mouse model, experimental autoimmune encephalomyelitis (EAE).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc4sgobg0o7ph25itlvfc1g0sagon1cjb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once