Publications by authors named "Kaan Sel"

The past several decades have seen rapid advances in diagnosis and treatment of cardiovascular diseases and stroke, enabled by technological breakthroughs in imaging, genomics, and physiological monitoring, coupled with therapeutic interventions. We now face the challenge of how to (1) rapidly process large, complex multimodal and multiscale medical measurements; (2) map all available data streams to the trajectories of disease states over the patient's lifetime; and (3) apply this information for optimal clinical interventions and outcomes. Here we review new advances that may address these challenges using digital twin technology to fulfill the promise of personalized cardiovascular medical practice.

View Article and Find Full Text PDF

Data from commercial off-the-shelf (COTS) wearables leveraged with machine learning algorithms provide an unprecedented potential for the early detection of adverse physiological events. However, several challenges inhibit this potential, including (1) heterogeneity among and within participants that make scaling detection algorithms to a general population less precise, (2) confounders that lead to incorrect assumptions regarding a participant's healthy state, (3) noise in the data at the sensor level that limits the sensitivity of detection algorithms, and (4) imprecision in self-reported labels that misrepresent the true data values associated with a given physiological event. The goal of this study was two-fold: (1) to characterize the performance of such algorithms in the presence of these challenges and provide insights to researchers on limitations and opportunities, and (2) to subsequently devise algorithms to address each challenge and offer insights on future opportunities for advancement.

View Article and Find Full Text PDF

The bold vision of AI-driven pervasive physiological monitoring, through the proliferation of off-the-shelf wearables that began a decade ago, has created immense opportunities to extract actionable information for precision medicine. These AI algorithms model input-output relationships of a system that, in many cases, exhibits complex nature and personalization requirements. A particular example is cuffless blood pressure estimation using wearable bioimpedance.

View Article and Find Full Text PDF

Smart rings provide unique opportunities for continuous physiological measurement. They are easy to wear, provide little burden in comparison to other smart wearables, are suitable for nocturnal settings, and can be sized to provide ideal contact between the sensors and the skin at all times. Continuous measuring of blood pressure (BP) provides essential diagnostic and prognostic value for cardiovascular health management.

View Article and Find Full Text PDF

The bold vision of AI-driven pervasive physiological monitoring, through the proliferation of off-the-shelf wearables that began a decade ago, has created immense opportunities to extract actionable information for precision medicine. These AI algorithms model the input-output relationships of a system that, in many cases, exhibits complex nature and personalization requirements. A particular example is cuffless blood pressure estimation using wearable bioimpedance.

View Article and Find Full Text PDF

Electrodermal activity (EDA) is a popular index of mental stress. State-of-the-art EDA sensors suffer from obstructiveness on the palm or low signal fidelity off the palm. Our previous invention of sub-micron-thin imperceptible graphene e-tattoos (GET) is ideal for unobstructive EDA sensing on the palm.

View Article and Find Full Text PDF

The demand for non-obtrusive, accurate, and continuous blood pressure (BP) monitoring systems is becoming more prevalent with the realization of its significance in preventable cardiovascular disease (CVD) globally. Current cuff-based standards are bulky, uncomfortable, and are limited to discrete recording periods. Wearable sensor technologies such as those using optical photoplethysmography (PPG) have been used to develop blood pressure estimation models through a variety of methods.

View Article and Find Full Text PDF

Bioimpedance has emerged as a promising modality to continuously monitor hemodynamic and respiratory physiological parameters through a non-invasive skin-contact approach. Bioimpedance sensors placed at the radial zone of the volar wrist provide sensitive operation to the blood flow of the underlying radial artery. The translation of bioimpedance systems into medical-grade settings for continuous hemodynamic monitoring, however, presents challenges when constraining the necessary sensing components to a minimal form factor while maintaining sufficient accuracy and precision of measurements.

View Article and Find Full Text PDF

: To achieve high-quality comprehensive feature extraction from physiological signals that enables precise physiological parameter estimation despite evolving waveform morphologies. : We propose Boosted-SpringDTW, a probabilistic framework that leverages dynamic time warping (DTW) and minimal domain-specific heuristics to simultaneously segment physiological signals and identify fiducial points that represent cardiac events. An automated dynamic template adapts to evolving waveform morphologies.

View Article and Find Full Text PDF

Continuous monitoring of arterial blood pressure (BP) in non-clinical (ambulatory) settings is essential for understanding numerous health conditions, including cardiovascular diseases. Besides their importance in medical diagnosis, ambulatory BP monitoring platforms can advance disease correlation with individual behaviour, daily habits and lifestyle, potentially enabling analysis of root causes, prognosis and disease prevention. Although conventional ambulatory BP devices exist, they are uncomfortable, bulky and intrusive.

View Article and Find Full Text PDF

Objective: Bioimpedance sensing is a powerful technique that measures the tissue impedance and captures important physiological parameters including blood flow, lung movements, muscle contractions, body fluid shifts, and other cardiovascular parameters. This paper presents a comprehensive analysis of the modality at different arterial (ulnar, radial, tibial, and carotid arteries) and thoracic (side-rib cage and top thoracolumbar fascia) body regions and offers insights into the effectiveness of capturing various cardiac and respiratory activities.

Methods: We assess the bioimpedance performance in estimating inter-beat (IBI) and inter -breath intervals (IBrI) on six-hours of data acquired in a pilot-study from five healthy participants at rest.

View Article and Find Full Text PDF

In the US alone, 22 million individuals suffer from obstructive sleep apnea (OSA), with 80% of the cases symptoms undiagnosed. Hence, there is an unmet need to continuously and unobtrusively monitor respiration and detect possible occurrences of apnea. Recent advancements in wearable biomedical technology can enable the capture of the periodicity of the heart pressure pulse from a wrist-worn device.

View Article and Find Full Text PDF

Continuous and robust monitoring of physiological signals is essential in improving the diagnosis and management of cardiovascular and respiratory diseases. The state-of-the-art systems for monitoring vital signs such as heart rate, heart rate variability, respiration rate, and other hemodynamic and respiratory parameters use often bulky and obtrusive systems or depend on wearables with limited sensing methods based on repetitive properties of the signals rather than the morphology. Moreover, multiple devices and modalities are typically needed for capturing various vital signs simultaneously.

View Article and Find Full Text PDF

Continuous monitoring of respiration and heart pressure pulse waves generated by lung and heart movements is essential in the diagnosis and management of cardiovascular and lung diseases. Traditional methods in measuring these physiological signals are not convenient for long-term monitoring during daily activities and sleeping due to their use of long wires and/or face masks, and leading to patients having to spend long duration in clinics while undergoing supervised monitoring. In this paper, we present a new method to measure global chest physiological signals using small-sized smart band-age like patches placed at different locations of the chest.

View Article and Find Full Text PDF