Image denoising, one of the essential inverse problems, targets to remove noise/artifacts from input images. In general, digital image denoising algorithms, executed on computers, present latency due to several iterations implemented in, e.g.
View Article and Find Full Text PDFA large portion of today's world population suffers from vision impairments and wears prescription eyeglasses. However, prescription glasses cause additional bulk and discomfort when used with virtual reality (VR) headsets, negatively impacting the viewer's visual experience. In this work, we remedy the usage of prescription eyeglasses with screens by shifting the optical complexity into the software.
View Article and Find Full Text PDFConventional models for lensless imaging assume that each measurement results from convolving a given scene with a single experimentally measured point-spread function. These models fail to simulate lensless cameras truthfully, as these models do not account for optical aberrations or scenes with depth variations. Our work shows that learning a supervised primal-dual reconstruction method results in image quality matching state of the art in the literature without demanding a large network capacity.
View Article and Find Full Text PDFImage-warping, a per-pixel deformation of one image into another, is an essential component in immersive visual experiences such as virtual reality or augmented reality. The primary issue with image warping is disocclusions, where occluded (and hence unknown) parts of the input image would be required to compose the output image. We introduce a new image warping method, Metameric image inpainting - an approach for hole-filling in real-time with foundations in human visual perception.
View Article and Find Full Text PDFComputer-generated holography algorithms often fall short in matching simulations with results from a physical holographic display. Our work addresses this mismatch by learning the holographic light transport in holographic displays. Using a camera and a holographic display, we capture the image reconstructions of optimized holograms that rely on ideal simulations to generate a dataset.
View Article and Find Full Text PDFExisting near-eye display designs struggle to balance between multiple trade-offs such as form factor, weight, computational requirements, and battery life. These design trade-offs are major obstacles on the path towards an all-day usable near-eye display. In this work, we address these trade-offs by, paradoxically, removing the display from near-eye displays.
View Article and Find Full Text PDFEmerging fields of mixed reality and electronic sports necessitate greater spatial and temporal resolutions in displays. We introduce a novel scanning display method that enhances spatiotemporal qualities of displays. Specifically, we demonstrate that scanning multiple image patches that are representing basis functions of each block in a target image can help to synthesize spatiotemporally enhanced visuals.
View Article and Find Full Text PDFEmergent in the field of head mounted display design is a desire to leverage the limitations of the human visual system to reduce the computation, communication, and display workload in power and form-factor constrained systems. Fundamental to this reduced workload is the ability to match display resolution to the acuity of the human visual system, along with a resulting need to follow the gaze of the eye as it moves, a process referred to as foveation. A display that moves its content along with the eye may be called a Foveated Display, though this term is also commonly used to describe displays with non-uniform resolution that attempt to mimic human visual acuity.
View Article and Find Full Text PDFTraditional optical manufacturing poses a great challenge to near-eye display designers due to large lead times in the order of multiple weeks, limiting the abilities of optical designers to iterate fast and explore beyond conventional designs. We present a complete near-eye display manufacturing pipeline with a day lead time using commodity hardware. Our novel manufacturing pipeline consists of several innovations including a rapid production technique to improve surface of a 3D printed component to optical quality suitable for near-eye display application, a computational design methodology using machine learning and ray tracing to create freeform static projection screen surfaces for near-eye displays that can represent arbitrary focal surfaces, and a custom projection lens design that distributes pixels non-uniformly for a foveated near-eye display hardware design candidate.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
November 2018
We describe a system which corrects dynamically for the focus of the real world surrounding the near-eye display of the user and simultaneously the internal display for augmented synthetic imagery, with an aim of completely replacing the user prescription eyeglasses. The ability to adjust focus for both real and virtual stimuli will be useful for a wide variety of users, but especially for users over 40 years of age who have limited accommodation range. Our proposed solution employs a tunable-focus lens for dynamic prescription vision correction, and a varifocal internal display for setting the virtual imagery at appropriate spatially registered depths.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
April 2017
Accommodative depth cues, a wide field of view, and ever-higher resolutions all present major hardware design challenges for near-eye displays. Optimizing a design to overcome one of these challenges typically leads to a trade-off in the others. We tackle this problem by introducing an all-in-one solution - a new wide field of view, gaze-tracked near-eye display for augmented reality applications.
View Article and Find Full Text PDFWe report a new technique for building a wide-angle, lightweight, thin-form-factor, cost-effective, easy-to-manufacture near-eye head-mounted display (HMD) for virtual reality applications. Our approach adopts an aperture mask containing an array of pinholes and a screen as a source of imagery. We demonstrate proof-of-concept HMD prototypes with a binocular field of view (FOV) of 70°×45°, or total diagonal FOV of 83°.
View Article and Find Full Text PDFTwo well-known problems of stereoscopic displays are the accommodation-convergence conflict and the lack of natural blur for defocused objects. We present a new technique that we name Super Stereoscopy (SS3D) to provide a convenient solution to these problems. Regular stereoscopic glasses are replaced by SS3D glasses which deliver at least two parallax images per eye through pinholes equipped with light selective filters.
View Article and Find Full Text PDFA new technique for multi-view autostereoscopic projection display is proposed, and demonstrated. The technique uses two mobile projectors, a rotating retro-reflective diffuser screen, and a head-tracking camera. As two dynamic viewing slits are created at the viewer's position, the slits can track the position of the eyes by rotating the screen.
View Article and Find Full Text PDFThis paper describes the first demonstrations of two dynamic exit pupil (DEP) tracker techniques for autostereoscopic displays. The first DEP tracker forms an exit pupil pair for a single viewer in a defined space with low intraocular crosstalk using a pair of moving shutter glasses located within the optical system. A display prototype using the first DEP tracker is constructed from a pair of laser projectors, pupil-forming optics, moving shutter glasses at an intermediate pupil plane, an image relay lens, and a Gabor superlens based viewing screen.
View Article and Find Full Text PDFIn this paper, we present a novel photoplethysmographic device that operates remotely, i.e. not in contact with the skin.
View Article and Find Full Text PDF