Severity of warming predicted by climate models depends on their Transient Climate Response (TCR). Inter-model spread of TCR has persisted at ~ 100% of its mean for decades. Existing observational constraints of TCR are based on observed historical warming response to historical forcing and their uncertainty spread is just as wide, mainly due to forcing uncertainty, and especially that of aerosols.
View Article and Find Full Text PDFProc Math Phys Eng Sci
October 2021
For epidemics such as COVID-19, with a significant population having asymptomatic, untested infection, model predictions are often not compatible with data reported only for the cases confirmed by laboratory tests. Additionally, most compartmental models have instantaneous recovery from infection, contrary to observation. Tuning such models with observed data to obtain the unknown infection rate is an ill-posed problem.
View Article and Find Full Text PDFInterest in the "Interdecadal Pacific Oscillation (IPO)" in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the interannual El Nino-Southern Oscillation (ENSO) phenomenon. IPO was defined by performing empirical orthogonal function (EOF) analysis of low-pass filtered SST. The low-pass filtering creates its unique set of mathematical problems-in particular, mode mixing-and has led to some questions, many unanswered.
View Article and Find Full Text PDFEvidence from palaeoclimatology suggests that abrupt Northern Hemisphere cold events are linked to weakening of the Atlantic Meridional Overturning Circulation (AMOC), potentially by excess inputs of fresh water. But these insights-often derived from model runs under preindustrial conditions-may not apply to the modern era with our rapid emissions of greenhouse gases. If they do, then a weakened AMOC, as in 1975-1998, should have led to Northern Hemisphere cooling.
View Article and Find Full Text PDFGlobal mean surface temperatures (GMST) exhibited a smaller rate of warming during 1998-2013, compared to the warming in the latter half of the 20th Century. Although, not a "true" hiatus in the strict definition of the word, this has been termed the "global warming hiatus" by IPCC (2013). There have been other periods that have also been defined as the "hiatus" depending on the analysis.
View Article and Find Full Text PDFA vacillating global heat sink at intermediate ocean depths is associated with different climate regimes of surface warming under anthropogenic forcing: The latter part of the 20th century saw rapid global warming as more heat stayed near the surface. In the 21st century, surface warming slowed as more heat moved into deeper oceans. In situ and reanalyzed data are used to trace the pathways of ocean heat uptake.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2013
The observed global-warming rate has been nonuniform, and the cause of each episode of slowing in the expected warming rate is the subject of intense debate. To explain this, nonrecurrent events have commonly been invoked for each episode separately. After reviewing evidence in both the latest global data (HadCRUT4) and the longest instrumental record, Central England Temperature, a revised picture is emerging that gives a consistent attribution for each multidecadal episode of warming and cooling in recent history, and suggests that the anthropogenic global warming trends might have been overestimated by a factor of two in the second half of the 20th century.
View Article and Find Full Text PDF