Crinipellins are a significant class of naturally occurring highly congested tetraquinane diterpenoids, with many members exhibiting bio-important antibacterial and anticancer activities. However, their complex structures, particularly their dense 5/5/5/5 tetracyclic frameworks, have made efficient synthesis challenging, leading chemists to attempt to create highly efficient and divergent routes. This study presents a concise, divergent synthesis of six crinipellins, completed in just 9-11 steps using commercially available materials.
View Article and Find Full Text PDFAn unusual cascade C-H activation, vinylation and 6π-electrocyclization of 2-pyridyl aldimines with vinyl bromides/triflates was achieved using catalysis with a unique CCC pincer NHC-Ru(iii) complex (Cat B). This reaction was found to enable a rapid and diverse synthesis of polycyclic 4-pyrido[1,2-]pyrimidine derivatives in mostly good to high yields, and with a broad substrate scope. A mechanistic study suggested the formation of a semi-opened Ru(iii) intermediate chelating/activating the aldimine, and the occurrence of single-electron transfer (SET) to generate a vinyl radical, followed by vinylation and then an intramolecular 6π-electrocyclization of 1,3-hexatrene to form the product.
View Article and Find Full Text PDFBridged chiral biaryls are axially chiral compounds with a medium-sized ring connecting the two arenes. Compared with plentiful methods for the enantioselective synthesis of biaryl compounds, synthetic approaches for this subclass of bridged atropisomers are limited. Here we show an atroposelective synthesis of 1,3-diaxial bridged eight-membered terphenyl atropisomers through an Co/SPDO (spirocyclic pyrrolidine oxazoline)-catalyzed aerobic oxidative coupling/desymmetrization reaction of prochiral phenols.
View Article and Find Full Text PDFA catalytic enantioselective polycyclization of tertiary enamides with terminal silyl enol ethers has been developed by virtue of Cu(OTf) catalysis with a novel spiropyrroline-derived oxazole (SPDO) ligand. This tandem reaction offers an effective approach to assemble bicyclic and tricyclic -heterocycles bearing both - and -quaternary stereogenic centers, which are primal subunits in a range of natural alkaloids. Strategic application of this methodology and a late-stage radical cyclization as key steps have been showcased in the concise total synthesis of (-)-cephalocyclidin A.
View Article and Find Full Text PDFA nickel hydride-catalyzed regio- and enantioselective hydroalkylation reaction was developed to give access to a library of chiral β- or γ-branched aromatic N-heterocycles. This intriguing asymmetric transformation features excellent selectivities, step- and atom-economies, and generating two kinds of chiral products through one synthetic strategy. Furthermore, the possible reaction mechanism was extensively investigated using numerous control experiments and density functional theory calculations.
View Article and Find Full Text PDFAn asymmetric intramolecular hydroalkylation of unactivated internal olefins with tethered cyclic ketones was realized by the cooperative catalysis of a newly designed chiral amine (SPD-NH ) and Pd complex, providing straightforward access to either bridged or fused bicyclic systems containing three stereogenic centers with excellent enantioselectivity (up to 99 % ee) and diastereoselectivity (up to >20 : 1 dr). Notably, the bicyclic products could be conveniently transformed into a diverse range of key structures frequently found in bioactive terpenes, such as Δ -protoilludene, cracroson D, and vulgarisins. The steric hindrance between the Ar group of the SPD-NH catalyst and the branched chain of the substrate, hydrogen-bonding interactions between the N-H of the enamine motif and the C=O of the directing group MQ, and the counterion of the Pd complex were identified as key factors for excellent stereoinduction in this dual catalytic process by density functional theory calculations.
View Article and Find Full Text PDFAn example of asymmetric Steglich-type rearrangement of enol lactones is reported. This highly enantioselective acyl transfer reaction is catalyzed by chiral isothiourea at ambient temperature and provides a useful synthetic approach to access enantioenriched spirotricyclic β,β'-diketones from a broad range of indanone or tetralone-derived lactones. Preliminary mechanistic studies suggest the initial formation of an -acylated iminium cation intermediate that induces a following facial selective condensation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2022
A facile benzylic alkylation of indenes and other arenes was developed from readily available primary and secondary alcohols using our newly investigated CCC pincer Ir catalyst (SNIr-H). Excellent regioselectivity and yield (89 %) of the C3-alkylated indenes were obtained. Additionally, the challenging sp C-alkylation was readily accomplished.
View Article and Find Full Text PDFNovel asymmetric mono- and dialkylation reactions of α-substituted 2,5-diketopiperazines catalyzed by new chiral spirocyclic-amide-derived triazolium organocatalysts have been developed, resulting in a range of enantioenriched 2,5-diketopiperazine derivatives containing one or two tetrasubstituted carbon stereocenters. The reactions feature high yields (up to 98%), and excellent cis-diastereo- and enantioselectivities (up to >20:1 dr, >99 % ee), and they provide a new asymmetric synthetic approach to important functionalized 2,5-diketopiperazine skeletons. Furthermore, a possible reaction mechanism was proposed based on both control experiments and extensive DFT calculations.
View Article and Find Full Text PDFA highly regio- and diastereo-selective Brønsted acid-catalyzed tandem hydrothiolation/Friedel-Crafts reaction of linear 1,3-dienes has been developed for the first time, which provides a metal-free and atom-economic way of constructing thiochromane derivatives. Meanwhile, by changing the solvent, 4,3-addition hydrothiolation of 1,3-dienes was also discovered. The origin of the observed selectivity was explained by density functional theory calculations.
View Article and Find Full Text PDFA Brønsted acid-catalyzed 1,4-addition hydrothiolation of branched 1,3-dienes was explored for the first time. A solvent-controlled divergent synthesis of sulfides is also disclosed. Use of acetonitrile as a solvent gave allylic sulfides as hydrothiolation products, while thiochromane derivatives (hydrothiolation/Friedel-Crafts products) were obtained using dichloromethane as the solvent.
View Article and Find Full Text PDFA versatile silylation of heteroaryl C-H bonds is accomplished under the catalysis of a well-defined spirocyclic NHC Ir(iii) complex (SNIr), generating a variety of heteroarylsilanes. A significant advantage of this catalytic system is that multiple types of intermolecular C-H silylation can be achieved using one catalytic system at α, β, γ, or δ positions of heteroatoms with excellent regioselectivities. Mechanistic experiments and DFT calculations indicate that the polycyclic ligand of SNIr can form an isolable cyclometalated intermediate, which leaves a phenyl dentate free and provides a hemi-open space for activating substrates.
View Article and Find Full Text PDFMexiletine and lidocaine are widely used class IB anti-arrhythmic drugs that are considered to act by blocking voltage-gated open sodium currents for treatment of ventricular arrhythmias and relief of pain. To gain mechanistic insights into action of anti-arrhythmics, we characterized biophysical properties of Nav1.5 and Nav1.
View Article and Find Full Text PDFMicrob Pathog
September 2011
Streptococcus suis serotype 2 is an important zoonotic pathogen that causes serious diseases such as meningitis, septicemia, endocarditis, arthritis and septic shock in pigs and humans. Little is known about the regulation of virulence gene expression in S. suis serotype 2.
View Article and Find Full Text PDF