Background: Hepatocellular carcinoma (HCC) remains a leading life-threatening health challenge worldwide, with pressing needs for novel therapeutic strategies. Sphingosine kinase 1 (SphK1), a well-established pro-cancer enzyme, is aberrantly overexpressed in a multitude of malignancies, including HCC. Our previous research has shown that genetic ablation of Sphk1 mitigates HCC progression in mice.
View Article and Find Full Text PDFIntroduction: Liver cancers exhibit abnormal (leaky) vasculature, hypoxia and an immunosuppressive microenvironment. Normalization of tumor vasculature is an emerging approach to treat many cancers. Blockmir CD5-2 is a novel oligonucleotide-based inhibitor of the miR-27a interaction with VE-Cadherin, the endothelial-specific cadherin.
View Article and Find Full Text PDFAlzheimer's disease (AD) is an age-related disease, with loss of integrity of the blood-brain barrier (BBB) being an early feature. Cellular senescence is one of the reported nine hallmarks of aging. Here, we show for the first time the presence of senescent cells in the vasculature in AD patients and mouse models of AD.
View Article and Find Full Text PDFThe effectiveness of immunotherapy against solid tumours is dependent on the appropriate leucocyte subsets trafficking and accumulating in the tumour microenvironment (TME) with recruitment occurring at the endothelium. Such recruitment involves interactions between the leucocytes and the endothelial cells (ECs) of the vessel and occurs through a series of steps including leucocyte capture, their rolling, adhesion, and intraluminal crawling, and finally leucocyte transendothelial migration across the endothelium. The tumour vasculature can curb the trafficking of leucocytes through influencing each step of the leucocyte recruitment process, ultimately producing an immunoresistant microenvironment.
View Article and Find Full Text PDFCellular senescence is now recognized as one of the hallmarks of aging. Herein, we examine current findings on senescence of the vascular endothelium and its impacts on age-related vascular diseases. Endothelial senescence can result in systemic metabolic changes, implicating senescence in chronic diseases such as diabetes, obesity and atherosclerosis.
View Article and Find Full Text PDFVascular normalisation, the process that reverses the structural and functional abnormalities seen in tumour-associated vessels, is also accompanied by changes in leucocyte trafficking. Our previous studies have shown the normalisation effects of the agent CD5-2 which acts to stabilise VE-Cadherin leading to increased penetration of CD8 T cells but decreased infiltration of neutrophils (CD11bGr1) into tumour parenchyma. In the present study, we demonstrate that VE-Cadherin stabilisation through CD5-2 treatment of purified endothelial cells (ECs) results in a similar leucocyte-selective regulation of transmigration, suggesting the existence of an endothelial specific intrinsic mechanism.
View Article and Find Full Text PDFCerebral cavernous malformations (CCMs) are vascular lesions predominantly developing in the central nervous system (CNS), with no effective treatments other than surgery. Loss-of-function mutation in CCM1/krev interaction trapped 1 (KRIT1), CCM2, or CCM3/programmed cell death 10 (PDCD10) causes lesions that are characterized by abnormal vascular integrity. Vascular endothelial cadherin (VE-cadherin), a major regulator of endothelial cell (EC) junctional integrity is strongly disorganized in ECs lining the CCM lesions.
View Article and Find Full Text PDFBackground: Vascular endothelial cell alignment in the direction of flow is an adaptive response that protects against aortic diseases such as atherosclerosis. The RhoGTPases are known to regulate this alignment. We have shown previously that ARHGAP18 in endothelial cells is a negative regulator of RhoC and its expression is essential in flow-mediated alignment.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
November 2019
Cerebral cavernous malformations (CCMs) are vascular malformations that cause hemorrhagic stroke. CCMs can arise from loss-of-function mutations in any one of CCM1 (KRIT1), CCM2 or CCM3 (PDCD10). Despite the mutation being in all endothelial cells the CCM lesions develop primarily in the regions with low fluid shear stress (FSS).
View Article and Find Full Text PDFBackground Vascular endothelial cell (EC) alignment in the direction of flow is an adaptive response that protects against aortic diseases, such as atherosclerosis. The Rho GTP ases are known to regulate this alignment. Herein, we analyze the effect of ARHGAP 18 on the regulation of EC alignment and examine the effect of ARHGAP 18 deficiency on the development of atherosclerosis in mice.
View Article and Find Full Text PDFAims/hypothesis: A major feature of diabetic retinopathy is breakdown of the blood-retinal barrier, resulting in macular oedema. We have developed a novel oligonucleotide-based drug, CD5-2, that specifically increases expression of the key junctional protein involved in barrier integrity in endothelial cells, vascular-endothelial-specific cadherin (VE-cadherin). CD5-2 prevents the mRNA silencing by the pro-angiogenic microRNA, miR-27a.
View Article and Find Full Text PDFCerebral cavernous malformation (CCM) is a common cerebrovascular disease that can occur sporadically or be inherited. They are major causes of stroke, cerebral hemorrhage, and neurological deficits in the younger population. Loss-of-function mutations in three genes, , , and , have been identified as the cause of human CCMs.
View Article and Find Full Text PDFRationale: Thoracic aortic aneurysm (TAA) is a potentially lethal condition, which can affect individuals of all ages. TAA may be complicated by the sudden onset of life-threatening dissection or rupture. The underlying mechanisms leading to TAA formation, particularly in the nonsyndromal idiopathic group of patients, are not well understood.
View Article and Find Full Text PDFT-cell infiltration of solid tumors is associated with improved prognosis and favorable responses to immunotherapy. Mechanisms that enable tumor infiltration of CD8 T cells have not been defined, nor have drugs that assist this process been discovered. Here we address these issues with a focus on VE-cadherin, a major endothelial cell-specific junctional protein that controls vascular integrity.
View Article and Find Full Text PDFThe formation of the vascular network requires a tightly controlled balance of pro-angiogenic and stabilizing signals. Perturbation of this balance can result in dysregulated blood vessel morphogenesis and drive pathologies including cancer. Here, we have identified a novel gene, ARHGAP18, as an endogenous negative regulator of angiogenesis, limiting pro-angiogenic signaling and promoting vascular stability.
View Article and Find Full Text PDFCellular junctions are essential to the normal functioning of the endothelium and control angiogenesis, tissue leak, and inflammation. From a screen of micro RNAs (miRNAs) altered in in vitro angiogenesis, we selected a subset predicted to target junctional molecules. MiR-27a was rapidly downregulated upon stimulation of in vitro angiogenesis, and its level of expression is reduced in neovessels in vivo.
View Article and Find Full Text PDFAstrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS). However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs) in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN).
View Article and Find Full Text PDFThe excitotoxin quinolinic acid (QUIN) is synthesized through the kynurenine pathway (KP) by activated monocyte lineage cells. QUIN is likely to play a role in the pathogenesis of several major neuroinflammatory diseases including Alzheimer's disease (AD). The presence of reactive astrocytes, astrogliosis, increased oxidative stress and inflammatory cytokines are important pathological hallmarks of AD.
View Article and Find Full Text PDFNeurotox Res
December 2007
The kynurenine pathway (KP) and several of its neuroactive products, especially quinolinic acid (QUIN), are considered to be involved in the neuropathogenesis of Alzheimer's disease (AD). There is growing evidence suggesting that astrocytes play a critical role in the regulation of the excitotoxicity and inflammatory processes that occur during the evolution of AD. This review focuses on the role of astrocytes through their relation with the KP to the different features associated with AD including cytokine, chemokine and adhesion molecule production, cytoskeletal changes, astrogliosis, excitotoxicity, apoptosis and neurodegeneration.
View Article and Find Full Text PDF