Histone deacetylase 7 (HDAC7) plays a pivotal role in the maintenance of the endothelium integrity. In this study, we demonstrated that the intron-containing Hdac7 mRNA existed in the cytosol and that ribosomes bound to a short open reading frame (sORF) within the 5'-terminal noncoding area of this Hdac7 mRNA in response to vascular endothelial growth factor (VEGF) stimulation in the isolated stem cell antigen-1 positive (Sca1 ) vascular progenitor cells (VPCs). A 7-amino acid (7A) peptide has been demonstrated to be translated from the sORF in Sca1 -VPCs in vitro and in vivo.
View Article and Find Full Text PDFAtherosclerosis, a chronic inflammatory condition that is characterized by the accumulation of lipid-loaded macrophages, occurs preferentially at the arterial branching points where disturbed flow is prominent. The pathogenesis of atherosclerotic lesion formation is a multistage process involving multiple cell types, inflammatory mediators and hemodynamic forces in the vessel wall in response to atherogenic stimuli. Researches from the past decade have uncovered the critical roles of microRNAs (miRNAs) in regulating multiple pathophysiological effects and signaling pathways in endothelial cells (ECs), vascular smooth muscle cells (VSMCs), macrophages and lipid homeostasis, which are key in atherosclerotic lesion formation.
View Article and Find Full Text PDFThe interaction between endothelial cells (ECs) and smooth muscle cells (SMCs) plays a critical role in the maintenance of vessel wall homeostasis. The X-box binding protein 1 (XBP1) plays an important role in EC and SMC cellular functions. However, whether XBP1 is involved in EC-SMC interaction remains unclear.
View Article and Find Full Text PDFCurr Opin Lipidol
October 2015
Purpose Of Review: Physiologically, endothelial integrity and smooth muscle homeostasis play key roles in the maintenance of vascular structure and functions. Under pathological conditions, endothelial and smooth muscle cells display great plasticity by transdifferentiating into other cell phenotypes. This review aims to update the progress in endothelial and smooth muscle cell transformation and to discuss their underlying mechanisms.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
October 2014
Mechanical forces have long been known to play a role in the maintenance of vascular homeostasis in the mature animal and in developmental regulation in the fetus. More recently, it has been shown that stem cells play a role in vascular repair and remodeling in response to biomechanical stress. Laminar shear stress can directly activate growth factor receptors on stem/progenitor cells, initiating signaling pathways leading toward endothelial cell differentiation.
View Article and Find Full Text PDFAbstract Circulating levels of asymmetric dimethylarginine (ADMA), a nitric oxide synthase inhibitor, are increased in patients with idiopathic pulmonary hypertension (IPAH). We hypothesized that ADMA abrogates gap junctional communication, required for the coordinated regulation of endothelial barrier function and angiogenesis, and so contributes to pulmonary endothelial dysfunction. The effects of ADMA on expression and function of gap junctional proteins were studied in human pulmonary artery endothelial cells; pulmonary endothelial microvascular cells from mice deficient in an enzyme metabolizing ADMA, dimethylarginine dimethylaminohydrolase I (DDAHI); and blood-derived endothelial-like cells from patients with IPAH.
View Article and Find Full Text PDFBackground: Chloride intracellular channel 4 (CLIC4) is highly expressed in the endothelium of remodeled pulmonary vessels and plexiform lesions of patients with pulmonary arterial hypertension. CLIC4 regulates vasculogenesis through endothelial tube formation. Aberrant CLIC4 expression may contribute to the vascular pathology of pulmonary arterial hypertension.
View Article and Find Full Text PDF