The quadrupolar hyperfine interactions of in-diffused (111)In --> (111)Cd probes in polycrystalline isostructural Zr(4)Al(3) and Hf(4)Al(3) samples containing small admixtures of the phases (Zr/Hf)(3)Al(2) were investigated. A strong preference of (111)In solutes for the contaminant (Zr/Hf)(3)Al(2) minority phases was observed. Detailed calculations of the electric field gradient (EFG) at the Cd nucleus using the full-potential augmented plane wave + local orbital formalism allowed us to assign the observed EFG fractions to the various lattice sites in the (Zr/Hf)(3)Al(2) compounds and to understand the preferential site occupation of the minority phases by the (111)In atoms.
View Article and Find Full Text PDFJ Phys Condens Matter
March 2009
By using the time-differential perturbed angular correlation technique, the electric field gradients (EFG) at (181)Hf/(181)Ta and (111)In/(111)Cd probe sites in the MoSi(2)-type compound Ti(2)Ag have been measured as a function of temperature in the range from 24 to 1073 K. Ab initio EFG calculations have been performed within the framework of density functional theory using the full-potential augmented plane wave+local orbitals method as implemented in the WIEN2k package. These calculations allowed assignments of the probe lattice sites.
View Article and Find Full Text PDFIon beam mixing of Fe/Si bilayers, induced by 100 keV (40)Ar ions at room temperature was investigated. Rutherford backscattering spectroscopy (RBS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied for structural characterization. The main focus of this study was on the influence of the substrate structure on interface mixing.
View Article and Find Full Text PDFThree rotational bands in 74Kr were studied up to (in one case one transition short of) the maximum spin I(max) of their respective single-particle configurations. Their lifetimes have been determined using the Doppler-shift attenuation method. The deduced transition quadrupole moments reveal a modest decrease, but far from a complete loss of collectivity at the maximum spin I(max).
View Article and Find Full Text PDFHigh-spin states in 72Br were studied with the EUROBALL III spectrometer using the 40Ca(40Ca,alpha3p1n) reaction. The negative-parity band observed in this experiment displays a signature inversion around spin I = 16. The interpretation within the cranked Nilsson-Strutinsky approach shows that this signature pattern is a signal of a substantial triaxial shape change with increasing spin where the nucleus evolves from a triaxial shape with rotation about the intermediate axis at low spin through a collective prolate shape to a triaxial shape but with rotation about the shortest principal axis at high spin.
View Article and Find Full Text PDFJ Res Natl Inst Stand Technol
August 2016
We have studied the isotopes (82)Rb45, (83)Rb46, and (84)Rb47 to search for magnetic rotation which is predicted in the tilted-axis cranking model for a certain mass region around A = 80. Excited states in these nuclei were populated via the reaction (11)B + (76)Ge with E = 50 MeV at the XTU tandem accelerator of the LNL Legnaro. Based on a γ-coincidence experiment using the spectrometer GASP we have found magnetic dipole bands in each studied nuclide.
View Article and Find Full Text PDFPhys Rev B Condens Matter
April 1996