Publications by authors named "KOMISAR D"

Channelling single-photon emission in multiple well-defined directions and simultaneously controlling its polarization characteristics is highly desirable for numerous quantum technology applications. We show that this can be achieved by using quantum emitters (QEs) nonradiatively coupled to surface plasmon polaritons (SPPs), which are scattered into outgoing free-propagating waves by appropriately designed metasurfaces. The QE-coupled metasurface design is based on the scattering holography approach with radially diverging SPPs as reference waves.

View Article and Find Full Text PDF

Generation of single photons carrying spin and orbital angular momenta (SAM and OAM) opens enticing perspectives for exploiting multiple degrees of freedom for high-dimensional quantum systems. However, on-chip generation of single photons encoded with single-mode SAM-OAM states has been a major challenge. Here, by using carefully designed anisotropic nanodimers fabricated atop a substrate, supporting surface plasmon polariton (SPP) propagation, and accurately positioned around a quantum emitter (QE), we enable nonradiative QE-SPP coupling and the SPP outcoupling into free-space propagating radiation featuring the designed SAM and OAM.

View Article and Find Full Text PDF

Impurity-vacancy centers in diamond offer a new class of robust photon sources with versatile quantum properties. While individual color centers commonly act as single-photon sources, their ensembles have been theoretically predicted to have tunable photon-emission statistics. Importantly, the particular type of excitation affects the emission properties of a color center ensemble within a diamond crystal.

View Article and Find Full Text PDF

On-chip photon sources carrying orbital angular momentum (OAM) are in demand for high-capacity optical information processing in both classical and quantum regimes. However, currently exploited integrated OAM sources have been primarily limited to the classical regime. Here, we demonstrate a room-temperature on-chip integrated OAM source that emits well-collimated single photons, with a single-photon purity of (0) ≈ 0.

View Article and Find Full Text PDF

Germanium vacancy (GeV) centers in diamonds constitute a promising platform for single-photon sources to be used in quantum information technologies. Emission from these color centers can be enhanced by utilizing a cavity that is resonant at the peak emission wavelength. We investigate circular plasmonic Bragg cavities for enhancing the emission from single GeV centers in nanodiamonds (NDs) at the zero phonon line.

View Article and Find Full Text PDF