We report spectroscopic evidence for the ultrafast trapping of band edge excitons at defects and the subsequent generation of defect-localized coherent phonons (CPs) in monolayer MoSe. While the photoluminescence measurement provides signals of exciton recombination at both shallow and deep traps, our time-resolved pump-probe spectroscopy on the sub-picosecond time scale detects localized CPs only from the ultrafast exciton trapping at shallow traps. Based on occupation-constrained density functional calculations, we identify the Se vacancy and the oxygen molecule adsorbed on a Se vacancy as the atomistic origins of deep and shallow traps, respectively.
View Article and Find Full Text PDFWe investigate the dynamics of surface plasmon (SP) lasing in Au gratings fabricated on InGaAs with a period of around 400 nm, which locates the SP resonance near the semiconductor energy gap and facilitates efficient energy transfer. By optically pumping the InGaAs to reach the population inversion required for the amplification and the lasing, we observe SP lasing at specific wavelengths that satisfy the SPR condition depending on the grating period. The carrier dynamics in semiconductor and the photon density in the SP cavity was investigated from the time-resolved pump-probe measurement and the time resolved photoluminescence spectroscopy, respectively.
View Article and Find Full Text PDFIntegration of distinct materials to form heterostructures enables the proposal of new functional devices based on emergent physical phenomena beyond the properties of the constituent materials. The optical responses and electrical transport characteristics of heterostructures depend on the charge and exciton transfer (CT and ET) at the interfaces, determined by the interfacial energy level alignment. In this work, heterostructures consisting of aggregates of fluorescent molecules (DY1) and 2D semiconductor MoS monolayers are fabricated.
View Article and Find Full Text PDFNanomaterials (Basel)
May 2021
Black phosphorus (BP) has attracted great attention due to its layer-tuned direct bandgap, in-plane anisotropic properties, and novel optoelectronic applications. In this work, the anisotropic characteristics of BP crystal in terms of the Raman tensor and birefringence are studied by investigating polarization dependence in both the generation and detection of A mode coherent phonons. While the generated coherent phonons exhibit the typical linear dichroism of BP crystal, the detection process is found here to be influenced by anisotropic multiple thin film interference, showing wavelength and sample thickness sensitive behaviors.
View Article and Find Full Text PDFThe integration of transition metal dichalcogenide (TMDC) layers on nanostructures has attracted growing attention as a means to improve the physical properties of the ultrathin TMDC materials. In this work, the influence of SiO nanopillars (NPs) with a height of 50 nm on the optical characteristics of MoS layers is investigated. Using a metal organic chemical vapor deposition technique, a few layers of MoS were conformally grown on the NP-patterned SiO/Si substrates without notable strain.
View Article and Find Full Text PDFAlthough single-layer transition-metal dichalcogenides with novel valley functionalities are a promising candidate to realize valleytronic devices, the essential understanding of valley depolarization mechanisms is still incomplete. Based on pump-probe experiments performed for MoSe2 and WSe2 monolayers and corroborating analysis from density functional calculations, we demonstrate that coherent phonons at the K-point of the Brillouin zone can effectively mediate the valley transfer of electron carriers. In the MoSe2 monolayer case, we identify this mode as the flexural acoustic ZA(K) mode, which has broken inversion symmetry and thus can enable electron spin-flip during valley transfer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
We fabricated plasmonic hybrid nanostructures consisting of MoS monolayer flakes and Au nanogratings with a period of 500 nm. The angle-resolved reflectance and photoluminescence spectra of the hybrid nanostructures clearly indicated a coupling between surface plasmon polaritons (SPPs) and incoming photons. The surface photovoltage (SPV) maps could visualize the spatial distribution of net charges while shining light on the sample.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2020
Interfacial bubbles are unintentionally created during the transfer of atomically thin 2D layers, a required process in the fabrication of van der Waals heterostructures. By encapsulating a WSe monolayer in hBN, we study the differing photoluminescence (PL) properties of the structure resulting from bubble formation. Based on the differentiated absorption probabilities at the bubbles compared to the pristine areas, we demonstrate that the visibility of the bubbles in PL mapping is enhanced when the photoexcitation wavelength lies between the n = 1 and n = 2 resonances of the A-exciton.
View Article and Find Full Text PDFAssessing atomic defect states and their ramifications on the electronic properties of two-dimensional van der Waals semiconducting transition metal dichalcogenides (SC-TMDs) is the primary task to expedite multi-disciplinary efforts in the promotion of next-generation electrical and optical device applications utilizing these low-dimensional materials. Here, with electron tunneling and optical spectroscopy measurements with density functional theory, we spectroscopically locate the mid-gap states from chalcogen-atom vacancies in four representative monolayer SC-TMDs-WS, MoS, WSe, and MoSe-, and carefully analyze the similarities and dissimilarities of the atomic defects in four distinctive materials regarding the physical origins of the missing chalcogen atoms and the implications to SC-mTMD properties. In addition, we address both quasiparticle and optical energy gaps of the SC-mTMD films and find out many-body interactions significantly enlarge the quasiparticle energy gaps and excitonic binding energies, when the semiconducting monolayers are encapsulated by non-interacting hexagonal boron nitride layers.
View Article and Find Full Text PDFWe report a cavity-dumped optical parametric oscillator (OPO) with a ring-type cavity configuration, which is based on periodically poled lithium niobate gain synchronously pumped by a mode-locked Ti:sapphire laser. Because of reduced cavity loss and group velocity dispersion inherent to ring-cavity employment, a wide wavelength tuning capability from 1.02 to 1.
View Article and Find Full Text PDFFrequency-dependent dielectric constant dispersion of monolayer WSe, ε(ω)=ε(ω)+i ε(ω), was obtained from simultaneously measured transmittance and reflectance spectra. Optical transitions of the trion as well as A-, B-, and C-excitons are clearly resolved in the ε spectrum. A consistent Kramers-Kronig transformation between the ε and ε spectra support the validity of the applied analysis.
View Article and Find Full Text PDFThe characteristic of strongly correlated materials is the Mott transition between metal and insulator (MIT or IMT) in the same crystalline structure, indicating the presence of a gap formed by the Coulomb interaction between carriers. The physics of the transition needs to be revealed. Using VO, as a model material, we observe the emergence of a metallic chain in the intermediate insulating monoclinic structure (M2 phase) of epitaxial strained films, proving the Mott transition involving the breakdown of the critical Coulomb interaction.
View Article and Find Full Text PDFWe report surface plasmon (SP) lasing in metal/semiconductor nanostructures, where one-dimensional periodic silver slit gratings are placed on top of an InGaAsP layer. The SP nature of the lasing is confirmed from the emission wavelength governed by the grating period, polarization analysis, spatial coherence, and comparison with the linear transmission. The excellent performance of the device as an SP source is demonstrated by its tunable emission in the 400-nm-wide telecom wavelength band at room temperature.
View Article and Find Full Text PDFWe report the observation of coherent lattice vibrations in mono- and few-layer WSe2 in the time domain, which were obtained by performing time-resolved transmission measurements. Upon the excitation of ultrashort pulses with the energy resonant to that of A excitons, coherent oscillations of the A1g optical phonon and longitudinal acoustic phonon at the M point of the Brillouin zone (LA(M)) were impulsively generated in monolayer WSe2. In multilayer WSe2 flakes, the interlayer breathing mode (B1) is found to be sensitive to the number of layers, demonstrating its usefulness in characterizing layered transition metal dichalcogenide materials.
View Article and Find Full Text PDFResonance effects in the thickness-dependent ultrafast carrier and phonon dynamics of topological insulator Bi2Se3 are found irrespective of the kind of substrate by measuring thickness-dependent abrupt changes of pump-probe differential-reflectivity signals (ΔR/R) from Bi2Se3 thin films on four different substrates of poly- and single-crystalline (sc-) ZnO, sc-GaN and SiO2. The absolute peak intensity of the ΔR/R is maximized at ∼t C (6 ∼ 9 quintuple layers), which is not directly related to but is very close to the critical thickness below which the energy gap opens. The intensities of the two phonon modes deduced from the oscillatory behaviors superimposed on the ΔR/R profiles are also peaked at ∼t C for the four kinds of substrates, consistent with the thickness-dependent Raman-scattering behaviors.
View Article and Find Full Text PDFAn optical parametric oscillator (OPO) based on magnesium-oxide-doped periodically poled lithium niobate (MgO:PPLN) is demonstrated to deliver visible femtosecond pulses, which were created through the intra-cavity nonlinear interactions within the PPLN itself. The signal from the OPO produces femtosecond pulses in the near-infrared region tunable from 1050 to 1600 nm. Visible femtosecond pulses in the range of 522-800 nm and those of 455-540 nm, respectively, were generated via second-harmonic generation (SHG) of signal photons and through sum-frequency generation (SFG) of pump and signal photons.
View Article and Find Full Text PDFWe demonstrate strong modulation of the transmission around the surface plasmon polariton (SPP) resonance in metal/semiconductor hybrid nanostructures based on Ag film on top of InGaAs. The change in the real and imaginary parts of the refractive index due to photoexcited carriers in InGaAs generates a shift in the SPP resonance and enhanced transmission near the SPP resonance. Temporal evolution of the complex refractive index was traced by comparing the transient transmission with finite-difference time-domain (FDTD) simulations.
View Article and Find Full Text PDFWe designed, fabricated, and characterized a dielectric metamaterial lens created by varying the density of subwavelength low refractive index nanoholes in a high refractive index substrate, resulting in a locally variable effective refraction index. It is shown that a constructed graded index lens can overcome diffraction effects even when the aperture/wavelength (D/λ) ratio is smaller than 40. In addition to the conventional design of a polarization insensitive lens, we also show that a polarization diversity lens (f(o)≠f(e)) can be realized by arranging nanoholes in patterns with variable density in different transverse directions.
View Article and Find Full Text PDFWe have studied the characteristics of longitudinal-optical-phonon-plasmon coupled (LOPC) mode by using the ultrashort pulsed laser with 45 THz bandwidth as a function of thickness in InAs epilayers, ranging from 10 to 900 nm. We have observed the LOPC modes split into the upper (L(+) mode) and the lower (L(-) mode) branches only in the classical scale, but the longitudinal-optical (LO) phonon peak was persistently observed. The shorter decay time of the plasmon-like L(+) modes rather than the phonon-like L(-) modes should be associated with carrier-carrier scattering which is further considered with diffusion properties in the low-gap semiconductors.
View Article and Find Full Text PDFWe report on the coupling of the air/metal mode and the substrate/metal mode surface plasmon polaritons in one-dimensional metallic slit arrays fabricated on a dielectric substrate. Anti-crossing is exhibited at an incident angle where the two independent modes can be resonantly excited at a specific wavelength. The size of the anti-crossing gap was measured while changing the metal thickness.
View Article and Find Full Text PDFHybrid nanocatalysts consisting of metal nanoparticle-semiconductor junctions offer an interesting platform to study the role of metal-oxide interfaces and hot electron flows in heterogeneous catalysis. Here, we report that hot carriers generated upon photon absorption significantly impact the catalytic activity of CO oxidation. We found that Pt-CdSe-Pt nanodumbbells exhibit a higher turnover frequency by a factor of 2 during irradiation by light with energy higher than the bandgap of CdSe, while the turnover rate on bare Pt nanoparticles did not depend on light irradiation.
View Article and Find Full Text PDFWe studied the in- and the out-coupling efficiencies of photons with a thin InGaAs slab covered by periodic gold nano-slit arrays, by measuring transmission and photoluminescence (PL) spectra. While the maximum in-coupled photons into the InGaAs slab waveguide were found at dip positions in transmission spectra, the mostly out-coupled photons were observed as peaks in PL spectra. For different periods of slit arrays and incident angles we discussed spectral positions of transmission dips and efficiency of the in-coupling influenced by the absorption coefficient of InGaAs.
View Article and Find Full Text PDFFast gain recovery observed in quantum-dot semiconductor-optical-amplifiers (QDSOAs) is useful for amplifying high-speed optical signals. The small but finite slow recovery component can deteriorate the signal amplification due to the accumulation of gain saturation during 10 Gb/s operation. A study of the gain recoveries and pattern effects in signals amplified using a 1.
View Article and Find Full Text PDFFree induction decay of the coherent electronic transition and coherent phonon oscillations of the radial breathing mode in single-walled carbon nanotubes are simultaneously observed via direct resonant excitation of the lowest E(11) optical transition in the near-infrared region from 0.939 to 1.1 eV.
View Article and Find Full Text PDFWe investigated the optical properties of ZnO/Ag grating structures fabricated by sputtering and nanoimprint lithography. The grating structures exhibited multiple peak features in broad visible-range photoluminescence (PL) spectra. The PL intensity of the grating was larger than that of a planar thin film by up to two orders of magnitude.
View Article and Find Full Text PDF