Antiviral responses can be triggered by the cytoplasmic RNA helicase RIG-I that binds to viral RNA. RIG-I-mediated signaling stimulates the transcription factors IRF3 and NF-κB and their activation mechanisms have been intensively studied. Here we examined Sendai virus (SV)-mediated activation of the transcription factor CREB and the role of its feedback repressor ICER in production of endogenous antiviral proteins.
View Article and Find Full Text PDFThe transcription factor interferon regulatory factor-3 (IRF3) regulates expression of type I interferon-beta and plays an important role in antiviral immunity. Despite the biological importance of IRF3, its in vivo phosphorylation pattern has not been reported. In this study, we have identified residues in IRF3 that are phosphorylated in vivo after infection with Sendai virus.
View Article and Find Full Text PDFAntiviral immune responses are initiated through Toll-like receptors (TLRs) and RIG-I (retinoic acid-inducible gene-I)-like RNA helicases that recognize nucleic acids from distinct viruses. In this study, we show that the tyrosine kinase c-Src participates in antiviral responses induced by the cytoplasmic RNA helicase RIG-I. Sendai virus (SV), which is recognized by RIG-I, induced c-Src phosphorylation.
View Article and Find Full Text PDF