Publications by authors named "KC Prince"

Tailored light-matter interactions in the strong coupling regime enable the manipulation and control of quantum systems with up to unit efficiency, with applications ranging from quantum information to photochemistry. Although strong light-matter interactions are readily induced at the valence electron level using long-wavelength radiation, comparable phenomena have been only recently observed with short wavelengths, accessing highly excited multi-electron and inner-shell electron states. However, the quantum control of strong-field processes at short wavelengths has not been possible, so far, because of the lack of pulse-shaping technologies in the extreme ultraviolet (XUV) and X-ray domain.

View Article and Find Full Text PDF

The valence and core electronic structure of three non-steroidal anti-inflammatory drugs (methyl salicylate, fenoprofen and ketoprofen) have been studied by photoelectron and soft X-ray absorption spectroscopy, supported by theoretical calculations of the molecular and electronic structure. The conformational landscape has been explored for sixteen low-energy conformers of fenoprofen and ketoprofen, and the energies of both compounds fall into two groups with steric similarities, separated by about 3 kJ mol. Valence band photoelectron spectra agree with previous results, and the spectra have been calculated using two approaches.

View Article and Find Full Text PDF

The circular dichroism (CD) of photoelectrons generated by near-infrared (NIR) laser pulses using multiphoton ionization of excited He ions in the 3p(m= +1) state is investigated. The ions were prepared by circularly polarized extreme ultraviolet (XUV) pulses. For circularly polarized NIR pulses co- and counter-rotating relative to the polarization of the XUV pulse, a complex variation of the CD is observed as a result of intensity- and polarization-dependent Freeman resonances, with and without additional dichroic AC-Stark shifts.

View Article and Find Full Text PDF

Quantum entanglement between the degrees of freedom encountered in the classical world is challenging to observe due to the surrounding environment. To elucidate this issue, we investigate the entanglement generated over ultrafast timescales in a bipartite quantum system comprising two massive particles: a free-moving photoelectron, which expands to a mesoscopic length scale, and a light-dressed atomic ion, which represents a hybrid state of light and matter. Although the photoelectron spectra are measured classically, the entanglement allows us to reveal information about the dressed-state dynamics of the ion and the femtosecond extreme ultraviolet pulses delivered by a seeded free-electron laser.

View Article and Find Full Text PDF

Wave packet interferometry with vacuum ultraviolet light has been used to probe a complex region of the electronic spectrum of molecular nitrogen, N2. Wave packets of Rydberg and valence states were excited by using double pulses of vacuum ultraviolet (VUV), free-electron-laser (FEL) light. These wave packets were composed of contributions from multiple electronic states with a moderate principal quantum number (n ∼ 4-9) and a range of vibrational and rotational quantum numbers.

View Article and Find Full Text PDF

The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations.

View Article and Find Full Text PDF

We report a theoretical investigation of photoionization by a pair of coherent, ultrashort, fundamental and second-harmonic extreme-ultraviolet pulses, where the photon energies are selected to yield the same photoelectron energy for ionization of two different subshells. This choice implies that the fundamental energy is equal to the difference in energy of the ionic states and that they are therefore coupled by the fundamental photon. By deriving analytical expressions using the essential-states approach, we show that this Rabi coupling creates coherence between the two photoelectron wave packets, which would otherwise be incoherent.

View Article and Find Full Text PDF

The electronic structure of ammonia-borane (NHBH) has been investigated by using valence and core photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy at the nitrogen and boron K edges. The first two valence ionic states display vibronic structure, in agreement with the published results for the first ionic state. Analysis of the vibrational frequency of the second state yields an assignment which is consistent with the calculated molecular orbital character reported in the literature.

View Article and Find Full Text PDF

We demonstrate the generation of extreme-ultraviolet (XUV) free-electron laser (FEL) pulses with time-dependent polarization. To achieve polarization modulation on a femtosecond timescale, we combine two mutually delayed counterrotating circularly polarized subpulses from two cross-polarized undulators. The polarization profile of the pulses is probed by angle-resolved photoemission and above-threshold ionization of helium; the results agree with solutions of the time-dependent Schrödinger equation.

View Article and Find Full Text PDF

Objective: The opioid crisis in the USA remains severe during the COVID-19 pandemic, which has reduced access to evidence-based interventions. This Stage 1 randomized controlled trial (RCT) assessed the preliminary efficacy of Zoom-based Mindfulness-Oriented Recovery Enhancement (MORE) plus Just-in-Time Adaptive Intervention (JITAI) prompts to practice mindfulness triggered by wearable sensors (MORE + JITAI).

Method: Opioid-treated chronic pain patients ( = 63) were randomized to MORE + JITAI or a Zoom-based supportive group (SG) psychotherapy control.

View Article and Find Full Text PDF

We have investigated the electronic structure of isolated molecules of paracetamol, aspirin and ibuprofen using computational methods and benchmarked the results against valence and core photoelectron spectra. Paracetamol, aspirin and ibuprofen exist as multiple conformers, and we have calculated the free energies and populations of the lowest energy conformers. We find generally good agreement with previous experimental and theoretical structural results.

View Article and Find Full Text PDF

Enhancing charge-carrier dynamics is imperative to achieve efficient photoelectrodes for practical photoelectrochemical devices. However, a convincing explanation and answer for the important question which has thus far been absent relates to the precise mechanism of charge-carrier generation by solar light in photoelectrodes. Herein, to exclude the interference of complex multi-components and nanostructuring, we fabricate bulky TiO photoanodes through physical vapor deposition.

View Article and Find Full Text PDF

The role of the oxidation state of cerium cations in a thin oxide film in the adsorption, geometry, and thermal stability of glycine molecules was studied. The experimental study was performed for a submonolayer molecular coverage deposited in vacuum on CeO(111)/Cu(111) and CeO(111)/Cu(111) films by photoelectron and soft X-ray absorption spectroscopies and supported by calculations for prediction of the adsorbate geometries, C 1s and N 1s core binding energies of glycine, and some possible products of the thermal decomposition. The molecules adsorbed on the oxide surfaces at 25 °C in the anionic form the carboxylate oxygen atoms bound to cerium cations.

View Article and Find Full Text PDF

An open-loop control scheme of molecular fragmentation based on transient molecular alignment combined with single-photon ionization induced by a short-wavelength free electron laser (FEL) is demonstrated for the acetylene cation. Photoelectron spectra are recorded, complementing the ion yield measurements, to demonstrate that such control is the consequence of changes in the electronic response with molecular orientation relative to the ionizing field. We show that stable CH cations are mainly produced when the molecules are parallel or nearly parallel to the FEL polarization, while the hydrogen fragmentation channel (CH → CH + H) predominates when the molecule is perpendicular to that direction, thus allowing one to distinguish between the two photochemical processes.

View Article and Find Full Text PDF

The photochemically induced ring-opening isomerization reaction of 1,3-cyclohexadiene to 1,3,5-hexatriene is a textbook example of a pericyclic reaction and has been amply investigated with advanced spectroscopic techniques. The main open question has been the identification of the single reactive state which drives the process. The generally accepted description of the isomerization pathway starts with a valence excitation to the lowest lying bright state, followed by a passage through a conical intersection to the lowest lying doubly excited state, and finally a branching between either the return to the ground state of the cyclic molecule or the actual ring-opening reaction leading to the open-chain isomer.

View Article and Find Full Text PDF

Superfluid helium nanodroplets are often considered as transparent and chemically inert nanometer-sized cryo-matrices for high-resolution or time-resolved spectroscopy of embedded molecules and clusters. On the other hand, when the helium nanodroplets are resonantly excited with XUV radiation, a multitude of ultrafast processes are initiated, such as relaxation into metastable states, formation of nanoscopic bubbles or excimers, and autoionization channels generating low-energy free electrons. Here, we discuss the full spectrum of ultrafast relaxation processes observed when helium nanodroplets are electronically excited.

View Article and Find Full Text PDF

Femtosecond extreme ultraviolet wave packet interferometry (XUV-WPI) was applied to study resonant interatomic Coulombic decay (ICD) in the HeNe dimer. The high demands on phase stability and sensitivity for vibronic XUV-WPI of molecular-beam targets are met using an XUV phase-cycling scheme. The detected quantum interferences exhibit vibronic dephasing and rephasing signatures along with an ultrafast decoherence assigned to the ICD process.

View Article and Find Full Text PDF

Rabi oscillations are periodic modulations of populations in two-level systems interacting with a time-varying field. They are ubiquitous in physics with applications in different areas such as photonics, nano-electronics, electron microscopy and quantum information. While the theory developed by Rabi was intended for fermions in gyrating magnetic fields, Autler and Townes realized that it could also be used to describe coherent light-matter interactions within the rotating-wave approximation.

View Article and Find Full Text PDF

We report a combination of quantum mechanical calculations and a range of spectroscopic measurements in the gas phase of N,N-diethylhydroxylamine, an important scavenger compound. Three conformers were observed by pulsed jet Fourier transform microwave spectroscopy in the 6.5-18.

View Article and Find Full Text PDF

The autoionization dynamics of superexcited superfluid He nanodroplets doped with Na atoms is studied by extreme-ultraviolet (XUV) time-resolved electron spectroscopy. Following excitation into the higher-lying droplet absorption band, the droplet relaxes into the lowest metastable atomic 1s2s states from which interatomic Coulombic decay (ICD) takes place either between two excited He atoms or between an excited He atom and a Na atom attached to the droplet surface. Four main ICD channels are identified, and their decay times are determined by varying the delay between the XUV pulse and a UV pulse that ionizes the initial excited state and thereby quenches ICD.

View Article and Find Full Text PDF

Background: Opioid misuse is hypothesized to compromise the ability to regulate negative emotions, as manifested through visceral and peripheral physiological signals. However, neurophysiological impairment of top-down cognitive emotion regulation in opioid misuse has not previously been shown.

Methods: Patients with chronic pain who had been taking opioids for 90 days or longer (N = 149; female, n = 98) underwent a negative emotion regulation task with electroencephalography.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates three isomers of hydroxybenzoic acid, phenol, and benzoic acid using advanced spectroscopic techniques and quantum chemistry.
  • 2-hydroxybenzoic acid (salicylic acid) is unique as it has a stable conformation with an internal hydrogen bond, while the other two isomers exist as mixtures of multiple conformers.
  • Distinct differences in photoelectron spectra highlight the effects of isomerism, particularly in salicylic acid, although minor variations were observed in X-ray absorption spectra due to conformational changes.
View Article and Find Full Text PDF

Clusters and nanodroplets hold the promise of enhancing high-order nonlinear optical effects due to their high local density. However, only moderate enhancement has been demonstrated to date. Here, we report the observation of energetic electrons generated by above-threshold ionization (ATI) of helium (He) nanodroplets which are resonantly excited by ultrashort extreme ultraviolet (XUV) free-electron laser pulses and subsequently ionized by near-infrared (NIR) or near-ultraviolet (UV) pulses.

View Article and Find Full Text PDF

The relaxation dynamics of superexcited superfluid He nanodroplets is thoroughly investigated by means of extreme-ultraviolet (XUV) femtosecond electron and ion spectroscopy complemented by time-dependent density functional theory (TDDFT). Three main paths leading to the emission of electrons and ions are identified: droplet autoionization, pump-probe photoionization, and autoionization induced by re-excitation of droplets relaxing into levels below the droplet ionization threshold. The most abundant product ions are He2+, generated by droplet autoionization and by photoionization of droplet-bound excited He atoms.

View Article and Find Full Text PDF