Publications by authors named "KATZENELLENBOGEN E"

The chemical structure of the lipopolysaccharide O-polysaccharide repeating unit of Edwardsiella tarda strain PCM 1155 was studied for the first time. The complete structure of repeating unit was investigated by chemical methods, H and C nuclear magnetic resonance (NMR) spectroscopy, and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The rarely occurring monosaccharide, 2,3-diacetamido-2,3,6-trideoxy-l-mannose (L-RhapNAc3NAc) was identified.

View Article and Find Full Text PDF

Background: Citrobacter strains are opportunistic pathogens often responsible for serious enteric as well as extra-intestinal diseases, and therefore the O-antigenic scheme, still in use in diagnostic identification, should be set for proper serotyping. The structures of more than 30 different Citrobacter O-antigens (O-polysaccharide chains of the lipopolysaccharides) of 43 Citrobacter O-serogroups have been elucidated so far. However, relationships between strains in several heterogeneous serogroups still need to be clarified by immunochemical studies.

View Article and Find Full Text PDF

LPS consists of a relatively conserved region of lipid A and core oligosaccharide and a highly variable region of O-antigen polysaccharide. Whereas lipid A is known to bind to the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and mannosylated O-antigen found in a human opportunistic pathogen, Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-].

View Article and Find Full Text PDF

Mild acid degradation of the lipopolysaccharide of Edwardsiella tarda PCM 1156 afforded an O-polysaccharide, which was isolated by gel-permeation chromatography on Sephadex G-50 and studied by sugar and methylation analyses along with (1)H NMR and (13)C NMR spectroscopy, including 2D (1)H,(1)H COSY, TOCSY, ROESY, (1)H,(13)C HSQC, and HMBC experiments. The following structure of the linear tetrasaccharide repeating unit of the O-polysaccharide was established: [structure: see text].

View Article and Find Full Text PDF

Mild acid degradation of the lipopolysaccharide of Edwardsiella tarda PCM 1150 afforded an O-polysaccharide, which was isolated by GPC on Sephadex G-50 and studied by sugar and methylation analyses along with 1D and 2D 1H and 13C NMR spectroscopies, including experiments performed in a 9:1 H2O/D2O mixture to detect NH protons and their correlations with CH protons. The O-polysaccharide was found to contain an amide of d-glucuronic acid with l-alanine (d-GlcA6Ala) and the following structure of the branched hexasaccharide repeating unit was established: -->4)-β-D-GlepA6Ala-(1-->4)-α-L-Fucp-(1-->4)-α-D-Glcp-(1-->4)-α-D-Quip-(1-->3)-β-D-GlcpNAc-(1-->3<--1α-D-GalpNAc.

View Article and Find Full Text PDF

Mild hydrolysis of the lipopolysaccharide of Hafnia alvei PCM 1224 at pH 4.2 cleaved partially the O-polysaccharide chain by the glycosyl phosphate linkages to yield a phosphorylated hexasaccharide representing the repeating unit of the O-polysaccharide and higher oligosaccharides consisting of two or more repeating units. Studies of the degradation products before and after dephosphorylation by sugar and methylation analyses along with 1D and 2D (1)H and (13)C NMR spectroscopy, including 2D (1)H,(1)H COSY, TOCSY, ROESY, (1)H,(13)C HSQC, HSQC-TOCSY, and (1)H,(31)P HMBC experiments, enabled elucidation of the following structure of the O-polysaccharide: [formula - see text].

View Article and Find Full Text PDF

The O-polysaccharide obtained by mild acid hydrolysis of the lipopolysaccharide of Citrobacter youngae PCM1505 was studied by sugar and methylation analyses along with 1D and 2D (1)H and (13)C NMR spectroscopies. The following structure of the tetrasaccharide repeating unit of the polysaccharide was established: [Formula: see text]. Structural and serological data obtained earlier and in this work show that the strain studied is a candidate to a new Citrobacter O-serogroup.

View Article and Find Full Text PDF

Lipopolysaccharides of four strains of Edwardsiella tarda were degraded by mild acid hydrolysis, and the released O-polysaccharides were isolated by GPC and studied by sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including 2D (1)H, (1)H COSY, TOCSY, ROESY, (1)H, (13)C HMBC, HSQC and HSQC-TOCSY experiments. The O-polysaccharide from E. tarda PCM 1153 was found to contain D-GalA, D-GlcNAc, D-Gal and 2-amino-1,3-propanediol (GroN).

View Article and Find Full Text PDF
Article Synopsis
  • O-specific polysaccharides in Gram-negative bacteria can form via two main methods: either by using pre-made repeating units or by adding monosaccharides to an existing chain.
  • The chain elongation can be categorized based on whether a special monosaccharide or substituent is present to terminate the process, with polymannose O-polysaccharides highlighting this concept.
  • The study reveals that all investigated polysaccharides share a modification at the end of the chain, specifically a methyl phosphate group on α-mannopyranose, which signals the end of chain elongation.
View Article and Find Full Text PDF

The O-polysaccharide (O-antigen) was obtained from the lipopolysaccharide of Citrobacter youngae PCM 1503, which is currently classified to the O7 serogroup. The following structure of the tetrasaccharide repeating unit of the polysaccharide was established by sugar and methylation analyses along with 1D and 2D (1)H and (13)C NMR spectroscopy: Structural and serological data of the O-antigen suggest that strain PCM 1503 should be reclassified to a new Citrobacter serogroup.

View Article and Find Full Text PDF

The lipopolysaccharide of Citrobacter freundii O22 (strain PCM 1555) was degraded under mild acidic conditions and the O-polysaccharide released was isolated by gel chromatography. Sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including two-dimensional (1)H,(1)H ROESY and (1)H,(13)C HMBC experiments, showed that the repeating unit of the O-polysaccharide has the following structure: alpha-Abep 1 -->3 --> 2)-alpha-D-Manp-(1-->4)-alpha-L-Rhap-(1-->3)-alpha-D-Galp-(1--> where Abe is abequose (3,6-dideoxy-D-xylo-hexose). SDS-PAGE and immunoblotting revealed that the O-antigen of C.

View Article and Find Full Text PDF

Introduction: Hafnia alveiis the only species of the genus Hafnia, which belongs to the family of Enterobacteriaceae. These Gram-negative bacteria are commonly distributed in the natural environment and are often the cause of human opportunistic infections. Their lipopolysaccharides (LPSs) are important surface antigens which are responsible for the serological specificity and numerous cross-reactions with other enterobacterial genera.

View Article and Find Full Text PDF

The O-specific polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide of Citrobacter werkmanii PCM 1548 and PCM 1549 (serogroup O14) and found to contain D-glucose, D-glucosamine and glycerol-1-phosphate in molar ratios 2 : 2 : 1. Based on methylation analysis and 1H and 13C nuclear magnetic resonance spectroscopy data, it was established that the O-specific polysaccharides from both strains have the identical branched tetrasaccharide repeating unit with 3,6-disubstituted GlcNAc, followed by 2,4-disubstituted Glc residues carrying at the branching points lateral residues of Glc and GlcNAc at positions 6 and 2, respectively. Glycerol-1-phosphate is linked to position 6 of the chain Glc.

View Article and Find Full Text PDF

Lipopolysaccharide was extracted from cells of Citrobacter freundii PCM 1443 from serogroup O39 and degraded by mild acid hydrolysis to give an O-polysaccharide. Based on enzymatic and methylation analyses, along with 1H and 13C nuclear magnetic resonance spectroscopy, it was found that the lipopolysaccharide studied has two different linear polysaccharide chains of d-galactan type containing 3-substituted galactose residues. One of the galactans has the disaccharide repeating units of alpha-D-galactopyranose and beta-D-galactofuranose and the other is comprised of alpha-D-galactopyranose and beta-D-galactopyranose, the latter being substituted in 25% repeats with PEtN at O-6.

View Article and Find Full Text PDF

Earlier, the structures of the O-chain polysaccharides of the lipopolysaccharides (LPS) of a number of Hafnia alvei strains have been established. However, it remained unknown, which is the first and the last monosaccharide of the O-chain. This is defined by the structure of the so-called biological repeating unit (O-unit), which is pre-assembled and then polymerised in the course of biosynthesis of bacterial polysaccharides by the Wzy-dependent pathway.

View Article and Find Full Text PDF

The O-polysaccharide of Hafnia alvei PCM 1189 consists of D-glucose, D-galactose, D-GalNAc and D-GlcA and lacks the strict regularity. The intact and carboxyl-reduced polysaccharides as well as oligosaccharides obtained by partial acid hydrolysis were studied by chemical and enzymatic analyses, methylation and NMR spectroscopy. The following structure was established for the O-polysaccharide, which is built up of branched hexa- to octasaccharide repeating units differing in the number of lateral glucose residues: [structure: see text] where the glucose residues shown in italics are nonstoichiometric substituents.

View Article and Find Full Text PDF

The following structure of the pentasaccharide repeating unit of an acidic O-polysaccharide of Hafnia alvei PCM 1529 was established by sugar and methylation analyses along with 1D and 2D 1H and 13C NMR spectroscopy: [Carbohydrate structure: see text].

View Article and Find Full Text PDF

Mild acid degradation of the lipopolysaccharide of Citrobacter youngae O9, strain PCM 1538 released a homopolysaccharide of 4-acetamido-4,6-dideoxy-D-mannose (D-Rha4NAc, N-acetyl-D-perosamine). Studies by methylation analysis and (1)H and (13)C NMR spectroscopy, using two-dimensional (1)H,(1)H COSY, TOCSY, NOESY and H-detected (1)H,(13)C HSQC experiments showed the presence of two structurally different polysaccharides consisting of the following units: -->)-alpha-D-Rhap4NAc-(1 --> and --> 3)-alpha-D-Rhap4NAc-(1 --> 3)-beta-D-Rhap4NAc-(1 -->.

View Article and Find Full Text PDF

An acidic O-polysaccharide isolated by mild acid hydrolysis from the lipopolysaccharide of Hafnia alvei PCM 1546 is composed of D-Gal, D-Glc, D-GlcA, D-GalNAc and O-acetyl groups in the ratios 1:1:1:2:1.6. On the basis of sugar and methylation analyses along with 1D and 2D 1H and 13C NMR spectroscopy, the following structure of the pentasaccharide repeating unit of the polysaccharide was established: [see equation in text].

View Article and Find Full Text PDF

The O-specific polysaccharide of Citrobacter braakii PCM 1531 (serogroup O6) was isolated by mild acid hydrolysis of the lipopolysaccharide (LPS) and found to contain d-fucose, l-rhamnose, 4-deoxy-d-arabino-hexose and O-acetyl groups in molar ratios 2 : 1 : 1 : 1. On the basis of methylation analysis and 1H and 13C NMR spectroscopy data, the structure of the branched tetrasaccharide repeating unit of the O-specific polysaccharide was established. Using various serological assays, it was demonstrated that the LPS of strain PCM 1531 is not related serologically to other known 4-deoxy-d-arabino-hexose-containing LPS from Citrobacter PCM 1487 (serogroup O5) or C.

View Article and Find Full Text PDF

The O-specific polysaccharide of the lipopolysaccharide of Citrobacter gillenii PCM 1540 (serogroup O11) consists of D-Glc, D-Man, D-GalNAc, D-GlcNAc, 2-acetamido-2,6-dideoxy-D-galactose (D-FucNAc) and O-acetyl groups in the ratios 2:1:1:1:1:1. On the basis of sugar and methylation analyses and Smith-degradation along with 1D and 2D 1H and 13C NMR spectroscopy, the following structure of the branched hexasaccharide repeating unit was established: [structure: see text]. Citrobacter werkmanii PCM 1541 belonging to the same serogroup O11 was found to have an R-form lipopolysaccharide devoid of the O-specific polysaccharide.

View Article and Find Full Text PDF

Serological studies using SDS-PAGE and immunoblotting revealed that from five strains that are ascribed to Citrobacter serogroup O2, four strains, PCM 1494, PCM 1495, PCM 1496 and PCM 1507, are reactive with specific anti-Citrobacter O2 serum. In contrast, strain PCM 1573 did not react with anti-Citrobacter O2 serum and, hence, does not belong to serogroup O2. The LPS of Citrobacter youngae O2a,1b (strain PCM 1507) was degraded under mild acidic conditions and the O-specific polysaccharide (OPS) released was isolated by gel chromatography.

View Article and Find Full Text PDF

The review presents the structures of the O-specific polysaccharides (O-antigens) of the lipopolysaccharides isolated from over 25 Citrobacter strains, which represent different species and serogroups. The correlation between O-antigen structure and immunospecificity as well as numerous cross-reactions between Citrobacter and other enterobacterial species are discussed.

View Article and Find Full Text PDF

The O-specific polysaccharide of Citrobacter gillenii PCM 1542 from serotype O-12a,12 b is composed of one residue each of D-glucose, D-GlcNAc, 2-deoxy-2-[(R)-3-hydroxybutyramido]-D-glucose (D-GlcNAcyl) and two GalNAc residues. On the basis of sugar and methylation analyses of the intact and Smith degraded polysaccharides, along with 1D and 2D 1H and 13C NMR spectroscopy, the following structure of the branched pentasaccharide repeating unit of the O-specific polysaccharide was established:This structure differs significantly from that of the O-specific polysaccharide of C. gillenii PCM 1544 from the same serotype O-12a,12 b, which has been established earlier (Kübler-Kielz.

View Article and Find Full Text PDF