Mutations in presenilins are the major cause of familial Alzheimer's disease, but the pathogenic mechanism by which presenilin mutations cause memory loss and neurodegeneration remains unclear. Here we demonstrate that conditional double knockout mice lacking both presenilins in the postnatal forebrain exhibit impairments in hippocampal memory and synaptic plasticity. These deficits are associated with specific reductions in NMDA receptor-mediated responses and synaptic levels of NMDA receptors and alphaCaMKII.
View Article and Find Full Text PDFp21 is a potent inhibitor of cyclin-dependent kinases capable of arresting cell cycle progression. p21 is primarily regulated at the transcriptional level by several transcription factors, including p53. Previously, we reported that certain members of the E2F family of transcription factors may activate p21 transcription via a p53-independent mechanism.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2004
The hippocampus is critical for formation of spatial memories. Hippocampal pyramidal neurons in freely behaving animals exhibit spatially selective firing patterns, which taken together form an internal representation of the environment. This representation is thought to contribute to the hippocampal spatial memory system.
View Article and Find Full Text PDFTo address the role of D1 receptors in the medial prefrontal cortex, we combined pharmacological and genetic manipulations to examine long-term synaptic potentiation (LTP)/long-term synaptic depression (LTD) in brain slices of rats and mice. We found that the D1 antagonist SCH23390 selectively blocked the maintenance but not the induction of LTP in the prefrontal cortex. Conversely, activation of D1 receptors facilitated the maintenance of LTP, and this effect is impaired in heterozygous D1 receptor knockout mice.
View Article and Find Full Text PDFThe late, transcription- and translation-dependent phase of long-term synaptic potentiation (L-LTP) at the Schaffer collateral synapse of the hippocampus is an experimental model of the synaptic plasticity underlying long-lasting memory formation. L-LTP is typically induced by homosynaptic tetanic stimulation; but associative forms of learning are likely to require the heterosynaptic pairing of stimuli. Here we describe L-LTP elicited by such heterosynaptic pairing at the Schaffer collateral synapse in mice.
View Article and Find Full Text PDFSynapse-specific facilitation requires rapamycin-dependent local protein synthesis at the activated synapse. In Aplysia, rapamycin-dependent local protein synthesis serves two functions: (1) it provides a component of the mark at the activated synapse and thereby confers synapse specificity and (2) it stabilizes the synaptic growth associated with long-term facilitation. Here we report that a neuron-specific isoform of cytoplasmic polyadenylation element binding protein (CPEB) regulates this synaptic protein synthesis in an activity-dependent manner.
View Article and Find Full Text PDFPrion proteins have the unusual capacity to fold into two functionally distinct conformations, one of which is self-perpetuating. When yeast prion proteins switch state, they produce heritable phenotypes. We report prion-like properties in a neuronal member of the CPEB family (cytoplasmic polyadenylation element binding protein), which regulates mRNA translation.
View Article and Find Full Text PDFIn contrast to our increasingly detailed understanding of how synaptic plasticity provides a cellular substrate for learning and memory, it is less clear how a neuron's voltage-gated ion channels interact with plastic changes in synaptic strength to influence behavior. We find, using generalized and regional knockout mice, that deletion of the HCN1 channel causes profound motor learning and memory deficits in swimming and rotarod tasks. In cerebellar Purkinje cells, which are a key component of the cerebellar circuit for learning of correctly timed movements, HCN1 mediates an inward current that stabilizes the integrative properties of Purkinje cells and ensures that their input-output function is independent of the previous history of their activity.
View Article and Find Full Text PDFDeregulated expression of c-Myc can sensitize cells to a variety of death stimuli, including loss of growth factors and oxygen. In this study, we examined whether rodent fibroblasts that conditionally express c-Myc undergo a similar mechanism of cell death in response to serum or oxygen deprivation. Our results demonstrate that murine embryonic fibroblasts from bax-/-bak-/- mice that conditionally express c-Myc did not die in response to either oxygen or serum deprivation.
View Article and Find Full Text PDFNeural science represents an important bridge between the natural sciences concerned with the nature of the physical world and the humanities concerned with the nature of human existence. We try to illustrate this bridging function in two ways. One, we show that many neural scientists study the brain to address humanistically important questions about the mind first raised by classical philosophy.
View Article and Find Full Text PDFLong-term synaptic plasticity requires both gene expression in the nucleus and local protein synthesis at synapses. The effector proteins that link molecular events in the cell body with local maintenance of synaptic strength are not known. We now show that treatment with serotonin (5-HT) that produces long-term facilitation induces the Aplysia eukaryotic translation elongation factor 1alpha (Ap-eEF1A) as a late gene that might serve this coupling function in sensory neurons.
View Article and Find Full Text PDFLocal protein synthesis is required for long-lasting synapse-specific plasticity in cultured Aplysia sensorimotor synapses. To identify synaptically localized mRNAs, we prepared a cDNA library from isolated sensory neurites. By sequence analysis, we estimate that the library contains 263 distinct mRNAs, with 98 of these mRNAs constituting 70% of all clones.
View Article and Find Full Text PDFThe time course and functional significance of the structural changes associated with long-term facilitation of Aplysia sensory to motor neuron synaptic connections in culture were examined by time-lapse confocal imaging of individual sensory neuron varicosities labeled with three different fluorescent markers: the whole-cell marker Alexa-594 and two presynaptic marker proteins-synaptophysin-eGFP to monitor changes in synaptic vesicle distribution and synapto-PHluorin to monitor active transmitter release sites. Repeated pulses of serotonin induce two temporally, morphologically, and molecularly distinct presynaptic changes: (1) a rapid activation of silent presynaptic terminals by filling of preexisting empty varicosities with synaptic vesicles, which parallels intermediate-term facilitation, is completed within 3-6 hr and requires translation but not transcription and (2) a slower generation of new functional varicosities which occurs between 12-18 hr and requires transcription and translation. Enrichment of empty varicosities with synaptophysin accounts for 32% of the newly activated synapses at 24 hr, whereas newly formed varicosities account for 68%.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) has been implicated in several forms of long-term potentiation (LTP) at different hippocampal synapses. Using two-photon imaging of FM 1-43, a fluorescent marker of synaptic vesicle cycling, we find that BDNF is selectively required for those forms of LTP at Schaffer collateral synapses that recruit a presynaptic component of expression. BDNF-dependent forms of LTP also require activation of L-type voltage-gated calcium channels.
View Article and Find Full Text PDFTo examine the role of C/EBP-related transcription factors in long-term synaptic plasticity and memory storage, we have used the tetracycline-regulated system and expressed in the forebrain of mice a broad dominant-negative inhibitor of C/EBP (EGFP-AZIP), which preferentially interacts with several inhibiting isoforms of C/EBP. EGFP-AZIP also reduces the expression of ATF4, a distant member of the C/EBP family of transcription factors that is homologous to the Aplysia memory suppressor gene ApCREB-2. Consistent with the removal of inhibitory constraints on transcription, we find an increase in the pattern of gene transcripts in the hippocampus of EGFP-AZIP transgenic mice and both a reversibly enhanced hippocampal-based spatial memory and LTP.
View Article and Find Full Text PDFAt Aplysia sensory-to-motor neuron synapses, the inhibitory neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFa) produces depression, and serotonin (5-HT) produces facilitation. Short-term depression has been found to result from the activation of a phospholipase A2. The released arachidonate is metabolized by 12-lipoxygenase to active second messengers.
View Article and Find Full Text PDFLearning-induced synaptic plasticity commonly involves the interaction between cAMP and p42/44MAPK. To investigate the role of Rap1 as a potential signaling molecule coupling cAMP and p42/44MAPK, we expressed an interfering Rap1 mutant (iRap1) in the mouse forebrain. This expression selectively decreased basal phosphorylation of a membrane-associated pool of p42/44MAPK, impaired cAMP-dependent LTP in the hippocampal Schaffer collateral pathway induced by either forskolin or theta frequency stimulation, decreased complex spike firing, and reduced the p42/44MAPK-mediated phosphorylation of the A-type potassium channel Kv4.
View Article and Find Full Text PDFCytoplasmic polyadenylation element-binding (CPEB) proteins control polyadenylation-induced translation in early development. Studies in oocytes led to the delineation of Xenopus CPEB, the first member of the family to be identified, and its mouse homologue mCPEB-1. Recently, a second mouse family member, mCPEB-2, has been described in germ cells.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
April 2003
Long-term synaptic plasticity is thought to underlie many forms of long-lasting memory. Long-lasting plasticity has been most extensively studied in the marine snail Aplysia and in the mammalian hippocampus, where Bliss and Lømo first described long-term potentiation 30 years ago. The molecular mechanisms of plasticity in these two systems have proven to have many similarities.
View Article and Find Full Text PDFThe pathology of trisomy 21/Down syndrome includes cognitive and memory deficits. Increased expression of the dual-specificity protein kinase DYRK1A kinase (DYRK1A) appears to play a significant role in the neuropathology of Down syndrome. To shed light on the cellular role of DYRK1A and related genes we identified three DYRK/minibrain-like genes in the genome sequence of Caenorhabditis elegans, termed mbk-1, mbk-2, and hpk-1.
View Article and Find Full Text PDFExpert Opin Ther Targets
February 2003
The treatment of memory disorders, such as the gradual weakening of memory with age, the ravages of Alzheimer's disease and the cognitive deficits in various forms of mental retardation, may greatly benefit from a better understanding of the molecular and cellular mechanisms of memory formation. There is increasing interest in the possibility of pharmacologically enhancing learning and memory even in the absence of specific anatomically evident pathology. Substantial evidence in experimental systems ranging from molluscs to humans indicates that the cAMP response element binding protein (CREB) is a core component of the molecular switch that converts short- to long-term memory.
View Article and Find Full Text PDFInteractions between ApCREB1a, ApCREB2, and ApC/EBP have been studied using conventional methods such as the yeast two-hybrid system. However, it is unclear whether these memory-related transcription factors actually interact in the native environment in neurons. To clarify this question, we have developed an Aplysia two-hybrid system and found, consistent with previous studies that ApCREB2 interacts with ApCREB1a and ApC/EBP, and that ApC/EBP forms homodimers.
View Article and Find Full Text PDFWe identified the Grp gene, encoding gastrin-releasing peptide, as being highly expressed both in the lateral nucleus of the amygdala, the nucleus where associations for Pavlovian learned fear are formed, and in the regions that convey fearful auditory information to the lateral nucleus. Moreover, we found that GRP receptor (GRPR) is expressed in GABAergic interneurons of the lateral nucleus. GRP excites these interneurons and increases their inhibition of principal neurons.
View Article and Find Full Text PDFUsing a simplified preparation of the Aplysia siphon-withdrawal reflex, we previously found that associative plasticity at synapses between sensory neurons and motor neurons contributes importantly to classical conditioning of the reflex. We have now tested the roles in that plasticity of two associative cellular mechanisms: activity-dependent enhancement of presynaptic facilitation and postsynaptically induced long-term potentiation. By perturbing molecular signaling pathways in individual neurons, we have provided the most direct evidence to date that each of these mechanisms contributes to behavioral learning.
View Article and Find Full Text PDF