The crystal structures of nine homoleptic, pseudooctahedral cobalt complexes, 1-9, containing either 2,2':6',2″-terpyridine (tpy), 4,4'-di-tert-butyl-2,2'-bipyridine ((t)bpy), or 1,10-phenanthroline (phen) ligands have been determined in three oxidation levels, namely, cobalt(III), cobalt(II), and, for the first time, the corresponding presumed cobalt(I) species. The intraligand bond distances in the complexes [Co(I)(tpy(0))2](+), [Co(I)((t)bpy(0))3](+), and [Co(I)(phen(0))3](+) are identical, within experimental error, not only with those in the corresponding trications and dications but also with the uncoordinated neutral ligands tpy(0), bpy(0), and phen(0). On this basis, a cobalt(I) oxidation state assignment can be inferred for the monocationic complexes.
View Article and Find Full Text PDFWhereas reaction of [(η(5)-Cp*)Ti(IV)Cl3](0) (1) with 2 equiv of neutral 2,2'-bipyridine (bpy) and 1.5 equiv of magnesium in tetrahydrofuran affords the mononuclear complex [(η(5)-Cp*)Ti(III)(bpy(•))2](0) (2), performing the same reaction with only 1 equiv each of magnesium and bpy provides the dinuclear complex [{(η(5)-Cp*)Ti(μ-Cl)(bpy(•))}2](0) (3). Conducting the latter reaction using 1,10-phenanthroline (phen) in place of bpy resulted in formation of dinuclear [{(η(5)-Cp*)Ti(μ-Cl)(phen(•))}2](0) (4).
View Article and Find Full Text PDFThree [MeNN]Cu(η-L) complexes (MeNN = HC[C(Me)NAr]; L = PhNO (), (), PhCH[double bond, length as m-dash]CH (); Ar = 2,6-Me-CH; Ar = 3,5-(CF)-CH) have been studied by Cu K-edge X-ray absorption spectroscopy, as well as single- and multi-reference computational methods (DFT, TD-DFT, CASSCF, MRCI, and OVB). The study was extended to a range of both known and theoretical compounds bearing 2p-element donors as a means of deriving a consistent view of how the pre-edge transition energy responds in systems with significant ground state covalency. The ground state electronic structures of many of the compounds under investigation were found to be strongly influenced by correlation effects, resulting in ground state descriptions with majority contributions from a configuration comprised of a Cu(ii) metal center anti-ferromagentically coupled to radical anion O, PhNO, and ligands.
View Article and Find Full Text PDFThe electronic structures of a series of chromium complexes 1-7 have been experimentally investigated using a combination of X-ray crystallography, magneto- and electrochemistry, and Cr K-edge X-ray absorption and UV-vis spectroscopies. Reaction of the dimer [Cr(II)2(μ-CH3CO2)4](0) with 2,2'-bipyridine (bpy(0)) produced the complex [Cr(III)(bpy(0))(bpy(•))(CH3CO2)2](0) (S = 1) (1), but in the presence of isopropylamine ((i)PrNH2) [Cr(III)(bpy(•))((i)PrNH2)2(CH3CO2)2](0) (S = 1) (2) was obtained. Both 1 and 2 contain a Cr(III) ion and a single (bpy(•))(1-) ligand, so are not low-spin Cr(II) species.
View Article and Find Full Text PDFThe oxidation state of the chromium center in the following compounds has been probed using a combination of chromium K-edge X-ray absorption spectroscopy and density functional theory: [Cr(phen)(3)][PF(6)](2) (1), [Cr(phen)(3)][PF(6)](3) (2), [CrCl(2)((t)bpy)(2)] (3), [CrCl(2)(bpy)(2)]Cl(0.38)[PF(6)](0.62) (4), [Cr(TPP)(py)(2)] (5), [Cr((t)BuNC)(6)][PF(6)](2) (6), [CrCl(2)(dmpe)(2)] (7), and [Cr(Cp)(2)] (8), where phen is 1,10-phenanthroline, (t)bpy is 4,4'-di-tert-butyl-2,2'-bipyridine, and TPP(2-) is doubly deprotonated 5,10,15,20-tetraphenylporphyrin.
View Article and Find Full Text PDFThe molecular and electronic structures of the four members, [Cr(tpy)(2)](PF(6))(n) (n = 3-0; complexes 1-4; tpy = 2,2':6',2″-terpyridine), of the electron transfer series [Cr(tpy)(2)](n+) have been determined experimentally by single-crystal X-ray crystallography, by their electro- and magnetochemistry, and by the following spectroscopies: electronic absorption, X-ray absorption (XAS), and electron paramagnetic resonance (EPR). The monoanion of this series, [Cr(tpy)(2)](1-), has been prepared in situ by reduction with KC(8) and its EPR spectrum recorded. The structures of 2, 3, 4, 5, and 6, where the latter two compounds are the Mo and W analogues of neutral 4, have been determined at 100(2) K.
View Article and Find Full Text PDFThe electron transfer series of complexes [V((t)bpy)(3)](z) (z = 3+, 2+, 0, 1-) has been synthesized and spectroscopically characterized with the exception of the monocationic species. Magnetic susceptibility measurements (4-290 K) establish an S = 1 ground state for [V((t)bpy)(3)](3+), S = (3)/(2) for [V((t)bpy)(3)](2+), S = (1)/(2) for [V((t)bpy)(3)], and an S = 0 ground state for [V((t)bpy)(3)](1-). The electrochemistry of this series recorded in tetrahydrofuran solution exhibits four reversible one-electron transfer steps.
View Article and Find Full Text PDFThe electron transfer series of complexes [Cr((t)bpy)(3)](n)(PF(6))(n) (n = 3+, 2+, 1+, 0 (1-4)) has been synthesized and the molecular structures of 1, 2, and 3 have been determined by single-crystal X-ray crystallography; the structure of 4 has been investigated using extended X-ray absorption fine structure (EXAFS) analysis. Magnetic susceptibility measurements (4-300 K) established an S = 3/2 ground state for 1, an S = 1 ground state for 2, an S = 1/2 ground state for 3, and an S = 0 ground state for 4. The electrochemistry of this series in CH(3)CN solution exhibits three reversible one-electron transfer waves.
View Article and Find Full Text PDFFour members of the rhenium tris(dithiolene) electron transfer series have been prepared, [Re(S(2)C(2)R(2))(3)](z) {R = Ph, z = 1+ (1), 0 (2), 1- (3); R = CN, z = 2- (4)}, with the anions in 3 and 4 structurally characterized. The intraligand C-S and C-C bond lengths for 3 vs 2 are indicative of ligand reduction concomitant with an overall distorted trigonal prismatic geometry (Θ = 26.3° cf.
View Article and Find Full Text PDFMultiple spectroscopic and computational methods were used to characterize the ground-state electronic structure of the novel {CoNO}(9) species Tp*Co(NO) (Tp* = hydro-tris(3,5-Me(2)-pyrazolyl)borate). The metric parameters about the metal center and the pre-edge region of the Co K-edge X-ray absorption spectrum were reproduced by density functional theory (DFT), providing a qualitative description of the Co-NO bonding interaction as a Co(II) (S(Co) = 3/2) metal center, antiferromagnetically coupled to a triplet NO(-) anion (S(NO) = 1), an interpretation of the electronic structure that was validated by ab initio multireference methods (CASSCF/MRCI). Electron paramagnetic resonance (EPR) spectroscopy revealed significant g-anisotropy in the S = ½ ground state, but the linear-response DFT performed poorly at calculating the g-values.
View Article and Find Full Text PDFFrom the reaction mixture of 3,6-dichlorobenzene-1,2-dithiol, H(2)(Cl(2)-bdt), [CrCl(3)(thf)(3)], and NEt(3) in tetrahydrofuran (thf) in the presence of air, dark green crystals of [N(n-Bu)(4)](2)[Cr(Cl(2)-bdt)(3)] (S = 1) (1) were isolated upon addition of [N(n-Bu)(4)]Br. Oxidation of the AsPh(4)(+) salt of 1 with [Fc]PF(6) yielded microcrystals of [AsPh(4)][Cr(Cl(2)-bdt)(3)] (S = (1)/(2)) (2) whereas the reduction of 1 with sodium amalgam produced light green crystals of [N-(n-Bu)(4)](3)[Cr(Cl(2)-bdt)(3)].thf (S = (3)/(2)) (3).
View Article and Find Full Text PDFChemistry
March 2010
A detailed spectroscopic and quantum chemical analysis is presented to elucidate the electronic structures of the octahedral complexes [Fe(Et(2)dtc)(3-n)(mnt)(n)](n-) (1-4, n=3, 2, 1, 0) and their one-electron oxidized analogues [Fe(Et(2)dtc)(3-n)(mnt)(n)]((n-1)-) (1(ox)-4(ox)); (mnt)(2-) represents maleonitriledithiolate(2-) and (Et(2)dtc)(1-) is the diethyldithiocarbamato(1-) ligand. By using X-ray crystallography, Mössbauer spectroscopy, and Fe and S K-edge X-ray absorption spectroscopy (XAS) it is convincingly shown that, in contrast to our previous studies on [Fe(cyclam)(mnt)](1+) (cyclam=1,4,8,11-tetraazacyclotetradecane), the oxidation of 1-4 is metal-centered yielding the genuine Fe(IV) complexes 1(ox)-4(ox). For the latter complexes, a spin ground state of S=1 has been established by magnetic susceptibility measurements, which indicates a low-spin d(4) configuration.
View Article and Find Full Text PDFInorg Chem
December 2009
The reaction of ReCl(5) with 3 equiv of a benzene-1,2-dithiolate derivative in CH(3)CN produced, after the addition of [C(8)H(16)N]Br ([C(8)H(16)N](+) is 5-azonia-spiro[4,4]nonane), brownish-green crystals of [C(8)H(16)N][Re(tms)(3)] (1c) and [C(8)H(16)N][Re(Cl(2)-bdt)(3)] (2c), where (tms)(2-) represents 3,6-bis(trimethylsilyl)benzene-1,2-dithiolate and (Cl(2)-bdt)(2-) is 3,6-dichlorobenzene-1,2-dithiolate. Chemical reduction of [Re(bdt)(3)] (3b) with n-butyllithium in the presence of PPh(4)Br yielded [PPh(4)][Re(bdt)(3)] (3c), where (bdt)(2-) is benzene-1,2-dithiolate. The three monoanionic complexes possess a diamagnetic ground state (Re(V), d(2), S = 0).
View Article and Find Full Text PDFThe reaction of [Ru(III)(cyclam)Cl(2)]Cl with 2 equiv of sodium N,N-diethyldithiocarbamate in methanol afforded [Ru(II)(cyclam)(Et(2)dtc)](BPh(4)) (1(BPh(4))). The same reaction with only 1 equiv of toluene-3,4-dithiol and a base yielded [Ru(cyclam)(tdt)](PF(6)) (2(PF(6))) which was oxidized by 1 equiv of ferrocenium hexafluorophosphate generating [Ru(cyclam)(tdt)](PF(6))(2) (2(ox)(PF(6))(2)). The crystal structures of 1 and 2 have been determined by X-ray crystallography at 100 K.
View Article and Find Full Text PDFInorg Chem
August 2009
The reaction of cis-[Fe(III)(cyclam)Cl(2)]Cl with 1 equiv of sodium N-diethyldithiocarbamate, toluene-3,4-dithiolate, and maleonitriledithiolate in methanol in the presence of triethylamine afforded the cations [Fe(III)(cyclam)(Et(2)dtc)](2+) (1), [Fe(III)(cyclam)(tdt)](+) (2), and [Fe(III)(cyclam)(mnt)](+) (3), which were isolated as triflate, hexafluorophosphate, and tetrafluoroborate salt, respectively, using sodium triflate, potassium hexafluorophosphate, or sodium tetrafluoroborate as the source for the counteranion. Complexes 1, 2, and 3 possess an S = (1)/(2) ground state (low-spin ferric d(5)). These salts were characterized by X-ray crystallography, UV-vis, Mössbauer, and electron paramagnetic resonance spectroscopies.
View Article and Find Full Text PDFThe neutral complex Zn(L*)(2) and its monocationic analogue [ZnL(L*).THF](1+) have been previously reported to contain two and one monoanionic alpha-iminopyridinate((1-)) pi radical ligands, respectively [Lu, C.C.
View Article and Find Full Text PDFCrystalline purple [PPh4][FeIIIL2] (1), where L2- represents the closed-shell dianion of 4,6-di-tert-butyl-2-[(pentafluorophenyl)amino]benzenethiol, has been synthesized from the reaction of H2L and FeBr2 (2:1) in acetonitrile with excess NEt3, careful, brief exposure of the solution to air, and addition of [PPh4]Br. The monoanion has been shown by X-ray crystallography to be square planar. The oxidation of 1 with 1 equiv of iodine produces the neutral species [FeI(L*)2]0 (2) where (L*)1- represents the one-electron oxidized pi radical anion of L2-.
View Article and Find Full Text PDFThe four-coordinate iron complexes, [Fe(III)(pda(2-))(pda(.-))] (1) and [AsPh(4)](2)[Fe(II)(pda(2-))(2)] (2) were synthesized and fully characterized; pda(2-) is the closed-shell ligand N,N'-bis(pentafluorophenyl)-o-phenylenediamido(2-), and pda(.-) represents its one-electron-oxidized pi-radical anion.
View Article and Find Full Text PDFInorg Chem
September 2007
From the reaction mixture of 3,6-di-tert-butylcatechol, H2[3,6L(cat)], [CrCl3(thf)3], and NEt3 in CH3CN in the presence of air, the neutral complex [CrIII(3,6L*(sq))3] (S = 0) (1) was isolated. Reduction of 1 with [Co(Cp)2] in CH2Cl2 yielded microcrystals of [Co(Cp)2][CrIII(3,6L*(sq))2(3,6L(cat))] (S = 1/2) (2) where (3,6L*(sq)(1-) is the pi-radical monoanionic o-semiquinonate of the catecholate dianion (3,6Lcat)(2-). Electrochemistry demonstrated that both species are members of the electron-transfer series [Cr(3,6LO,O)]z (z = 0, 1-, 2-, 3-).
View Article and Find Full Text PDFThe characterization of high-valent iron species is of interest due to their relevance to biological reaction mechanisms. Recently, we have synthesized and characterized an [Fe(V)-nitrido-cyclam-acetato]+ complex, which has been characterized by Mössbauer, magnetic susceptibility data, and XAS spectroscopies combined with DFT calculations (Aliaga-Alcade, N.; DeBeer George, S.
View Article and Find Full Text PDFThe reaction of 3 equiv of the ligand 2-mercapto-3,5-di-tert-butylaniline, H2[LN,S], or 3,5-di-tert-butyl-1,2-benzenedithiol, H2[LS,S], with 1 equiv of [MoO2(acac)2] or WCl6 (acac=acetonylacetate(1-)) in methanol or CCl4 afforded the diamagnetic neutral complexes [MoV(LN,S)2(L*N,S)]0 (1), [MoV(LS,S)2(L*S,S)] (2), and [WV(LS,S)2(L*S,S)] (3), where (L*N,S)- and (L*S,S)- represent monoanionic pi-radical ligands (Srad=1/2), which are the one-electron oxidized forms of the corresponding closed-shell dianions (LN,S)2- and (LS,S)2-. Complexes 1-3 are trigonal-prismatic members of the electron-transfer series [ML3]z (z=0, 1-, 2-). Reaction of 2 and 3 with [N(n-Bu)4](SH) in CH2Cl2 under anaerobic conditions afforded paramagnetic crystalline [N(n-Bu)4][MoV(LS,S)3] (4) and [N(n-Bu)4][WV(LS,S)3] (5).
View Article and Find Full Text PDFThe preparation and structural characterization of the neutral, square planar complexes [PtII(tbpy)(A)] (1), [PtII(tbpy)(B)] (2), and [PtII(PPh3)2(B)] (3) have been accomplished, where (tbpy) = 4,4'-di-tert-butylpyridine, (A)2- = 3,6-bis(trimethylsilyl)-1,2-benzenedithiolate(2-), and (B)2- = 1,2-bis(4-tert-butylphenyl)ethylene-1,2-dithiolate(2-) and (A*)1- and (B*)1- represent the corresponding monoanionic radicals. Electrochemical and chemical one-electron oxidation of 1 and 2 in CH2Cl2 solution affords the monomeric monocations [PtII(tbpy)(A*)]+ (1a) and [PtII(tbpy)(B*)]+ (2a), both of which possess an S = 1/2 ground state. The corresponding spin doublet monocationic dimers [PtII2(tbpy)2(A)(A*)]+ (1b) and [PtII2(tbpy)2(B)(B*)]+ (2b) were electrochemically generated in solution (50% oxidation) and identified by X-band EPR spectroscopy.
View Article and Find Full Text PDFA series of transition metal complexes involving non-innocent o-dithiolene and o-phenylenediamine ligands has been characterized in detail by various spectroscopic methods like magnetic circular dichroism (MCD), absorption (abs), resonance Raman (rR), electron paramagnetic resonance (EPR), and sulfur K-edge X-ray absorption spectroscopies. A computational model for the electronic structure of the complexes is then proposed based on the density functional theory (DFT) or ab-initio methods, which can successfully account for the observed trends in the experimental spectra (MCD, rR, and abs) of the complexes. Based on these studies, the innocent vs non-innocent nature of the ligands in a given transition metal complex is found to be dependent on the position of the central metal ion in the periodic table, its effective nuclear charge in interplay with relativistic effects.
View Article and Find Full Text PDFThree new pentadentate, pendent arm macrocycles containing the 1,4,7-triazacyclononane-1,4-diacetate motif have been synthesized, and their coordination chemistry with Fe(III) has been investigated. Eight new octahedral Fe(III) complexes containing chloro, azido, or mu-oxo ligands have been synthesized, five of which have been characterized by X-ray crystallography. Spectroscopic characterization of these octahedral Fe(III) complexes by UV-vis, IR, electrochemistry, EPR, magnetic susceptibility, and zero-field Mössbauer measurements firmly establishes the high-spin state of the iron in all complexes.
View Article and Find Full Text PDFThe electronic structures of [M(L(Bu))(2)](-) (L(Bu)=3,5-di-tert-butyl-1,2-benzenedithiol; M=Ni, Pd, Pt, Cu, Co, Au) complexes and their electrochemically generated oxidized and reduced forms have been investigated by using sulfur K-edge as well as metal K- and L-edge X-ray absorption spectroscopy. The electronic structure content of the sulfur K-edge spectra was determined through detailed comparison of experimental and theoretically calculated spectra. The calculations were based on a new simplified scheme based on quasi-relativistic time-dependent density functional theory (TD-DFT) and proved to be successful in the interpretation of the experimental data.
View Article and Find Full Text PDF