Publications by authors named "K. R. Justin Thomas"

Two-dimensional donor-acceptor covalent organic frameworks (COFs) show considerable promise for metal-free and heterogeneous photocatalysis due to their efficient charge carrier separation and exciton transport upon photoexcitation. To date, numerous photocatalysts have been developed. However, they encounter several challenges, such as inadequate sunlight harvesting ability, poor photostability, and nonreusability.

View Article and Find Full Text PDF

The conversion of alkenes to carbonyl constituents via the cleavage of the C═C bond is unique due to its biological and pharmacological significance. Though a number of oxidative C═C cleavage protocols have been demonstrated for terminal and electron-rich alkene systems, none of them were optimized for electron-deficient and conjugated alkenes. In this work, a covalent organic framework containing triphenylamine and triazine units was revealed to cleave the C═C bond of alkenes under very mild conditions involving visible light irradiation due to its photoredox property.

View Article and Find Full Text PDF

The visible-light-promoted catalyst-free condition has been demonstrated for self- and cross-coupling reactions of thiols in an ambient atmosphere. Further, synthesis of β-hydroxysulfides is accomplished under very mild conditions involving the formation of an electron donor-acceptor (EDA) complex between a disulfide and an alkene. However, the direct reaction of thiol with alkene the formation of a thiol-oxygen co-oxidation (TOCO) complex failed to produce the desired compounds in high yields.

View Article and Find Full Text PDF

Magnesium alloys are broadly used worldwide in various applications; however, the serious disadvantage of these alloys are subject to corrosion and in aggressive/corrosive environments. A coating containing gadolinium-based composite materials can increase the alloy protection by strong electron transfer between the host alloy and the lanthanide-containing protective layer. This investigation aims to develop a Gd nanorod functionalised graphene oxide material as a corrosion inhibition barrier on the Mg alloy surface.

View Article and Find Full Text PDF

A series of carbazole-based dyes functionalized with different auxochromes via vinyl linker have been synthesized and characterized. A progressive shift in the absorption maximum is observed as the conjugation and electron-donating nature of chromophore increases. Dyes containing electron-releasing terminal groups such as triphenylamine and carbazole exhibited positive emission solvatochromism attributable to an induced intramolecular charge transfer from triphenylamine/carbazole donor to cyano acceptor.

View Article and Find Full Text PDF

Carbazoles decorated with both donor and acceptor fragments offer a classical way to optimize bipolar functional properties. In this work, a series of carbazoles featuring triphenylamine donors and cyano acceptors are synthesized and their structure-property relationship is studied. The effects of connectivity and the chromophore number density on photophysical and electroluminescence properties are investigated.

View Article and Find Full Text PDF

A series of 1,8-naphthalimide-based fluorophores containing different chromophores with varying conjugation and electron richness at the imidic nitrogen atom are synthesized and characterized. These amine-functionalized naphthalimides are bipolar in nature and exhibit interesting optical and morphological variations attributable to the nature of the N substituents. Despite the fact that the dyes are structurally different owing to variation of the substituent on the imidic nitrogen atom, their electronic characteristics are similar and originate from the 4-aminonaphthalimide segment.

View Article and Find Full Text PDF

Benzimidazole-branched bi-anchoring organic dyes that contained triphenylamine/phenothiazine donors, 2-cyanoacrylic acid acceptors, and various π linkers were synthesized and examined as sensitizers for dye-sensitized solar cells. The structure-activity relationships in these dyes were systematically investigated by using absorption spectroscopy, cyclic voltammetry, and density functional theory calculations. The wavelength of the absorption peak was more-heavily influenced by the nature of the π linker than by the nature of the donor.

View Article and Find Full Text PDF

Plant factories have attracted increasing attention because they can produce fresh fruits and vegetables free from pesticides in all weather. However, the emission spectra from current light sources significantly mismatch the spectra absorbed by plants. We demonstrate a concept of using multiple broad-band as well as narrow-band solid-state lighting technologies to design plant-growth light sources.

View Article and Find Full Text PDF

A series of thienylphenothiazine decorated carbazoles were synthesized and characterized by optical, electrochemical, thermal, and theoretical investigations. Absorption spectra of the compounds are influenced by the substitution pattern and chromophore number density. Compounds containing 2,7-substitution exhibited red-shifted absorption, while the chromophore loading on the other positions led to the increment in molar extinction coefficients due to the increase in the chromophore density.

View Article and Find Full Text PDF

New organic dyes containing fluorene functionalized with two imidazole chromophores as donors and cyanoacrylic acid acceptors have been synthesized and successfully demonstrated as sensitizers in nanocrystalline TiO2-based dye-sensitized solar cells (DSSCs). The monoimidazole analogues were also synthesized for comparison. The Sommelet reaction of bromomethylated 2-bromo-9,9-diethyl-9H-fluorene produced the key precursor 7-bromo-9,9-diethyl-9H-fluorene-2,4-dicarbaldehyde required for the preparation of imidazole-functionalized fluorenes.

View Article and Find Full Text PDF

A series of new metal free organic dyes containing carbazole as donor and π-linker have been synthesized and characterized as effective sensitizers for dye sensitized solar cells (DSSCs). The carbazole functionalized at C-2 and C-7 served as electron-rich bridge. The donor property of the carbazole is substantially enhanced on introduction of tert-butyl groups at C-3 and C-6 positions and the oxidation propensity of the dyes increased on insertion of thiophene unit in the conjugation pathway.

View Article and Find Full Text PDF

A series of pyrenoimidazoles that contained various functional chromophores, such as anthracene, pyrene, triphenylamine, carbazole, and fluorene, were synthesized and characterized by optical, electrochemical, and theoretical studies. The absorption spectra of the dyes are dominated by electronic transitions that arise from the pyrenoimidazole core and the additional chromophore. All of the dyes exhibited blue-light photoluminescence with moderate-to-high quantum efficiencies.

View Article and Find Full Text PDF

In the title compound, C(19)H(13)Br(2)NO, the dihedral angle between the rings of the biphenyl group is 53.59 (14)°. The ring of the benzamide group is inclined to the phenyl rings of the biphenyl group by 23.

View Article and Find Full Text PDF

Organic dyes that contain a 2,7-diaminofluorene-based donor, a cyanoacrylic-acid acceptor, and various aromatic conjugation segments, which are composed of benzene, fluorene, carbazole, and thiophene units, as a π-bridge have been synthesized and characterized by optical, electrochemical, and theoretical investigations. The trends in the absorption and electrochemical properties of these dyes are in accordance with the electron-donating ability of the conjugating segment. Consequently, the dyes that contained a 2,7-carbazole unit in the π-spacer exhibited red-shifted absorption and lower oxidation potentials than their corresponding fluorene- and phenylene-bridged dyes.

View Article and Find Full Text PDF

The complete mol-ecule of the title compound, C(10)H(4)N(2)S(2), is generated by an inversion center situated at the mid-point of the bridging C-C bond. The bithio-phene ring system is planar [maximum deviation = 0.003 (2) Å] and the central C-C bond length is 1.

View Article and Find Full Text PDF

In he title compound, C(16)H(13)Br(4)N, the carbazole skeleton is nearly planar [maximum deviation = 0.026 (4) Å] and makes a dihedral angle of 73.8 (4)° with the butyl chain.

View Article and Find Full Text PDF

In the title mol-ecule, C(26)H(25)Br(3)N(2), a dihedral angle of 6.15 (10)° is present between the carbazole and benzene ring systems with an E conformation about the C=C bond [1.335 (4) Å].

View Article and Find Full Text PDF

New blue- to yellow-emitting materials have been developed by incorporating fluorene-based chromophores on pyrene core with acetylene linkage and using multifold palladium-catalyzed cross-coupling reactions. Both mono- and tetrasubstituted derivatives have been synthesized and characterized. The tetrasubstituted derivatives displayed red-shifted emission when compared to the monosubstituted derivative indicative of an extended conjugation in the former.

View Article and Find Full Text PDF

In the title compound, C(30)H(34)N(4)S, each of the benzothia-diazole and fluorene fused ring systems is almost planar (r.m.s.

View Article and Find Full Text PDF

In the title mol-ecule, C(51)H(46)BrN(3), the central fluorene residue is planar (r.m.s.

View Article and Find Full Text PDF
4,4'-Dibromo-2-nitro-biphen-yl.

Acta Crystallogr Sect E Struct Rep Online

February 2012

The title compound, C(12)H(7)Br(2)NO(2), a biphenyl derivative, displays a twisted conformation with the two benzene rings making a dihedral angle of 55.34 (14)°. The dihedral angle between the nitro group and its parent benzene ring is 26.

View Article and Find Full Text PDF

New organic dyes containing pyrenylamine donors in a cascade arrangement and cyanoacrylic acid acceptors have been synthesized and characterized by optical, electrochemical, and theoretical studies. The dyes inherit a D-π(1)-D-π(2)-A (D=donor, A=acceptor) molecular architecture where the π linkers π(1) are changed from phenyl to biphenyl and fluorene, whereas the π linker π(2) that connects the donor fragment with the acceptor is a phenyl unit. The conjugation pathway linking the two donor segments has been found to play a major role in the optical and electrochemical properties.

View Article and Find Full Text PDF

A new series of metal-free organic dyes containing pyrene and α-cyanoacrylic acid end groups and thiophene, bithiophene, thienylbenzene or thienylfluorene π-linkers were synthesized and characterized by absorption, emission and electrochemical measurements. Time-dependent density functional theoretical calculations were also performed to unravel the nature of the absorption induced electronic excitations. Extension of conjugation in the π-linker by the incorporation of phenyl or fluorene was found to enhance the molar extinction coefficient while the use of thiophene red-shifted the absorption.

View Article and Find Full Text PDF

A new series of alkylamine- or arylamine-substituted benzo[a]phenazines have been synthesized from 1,2-naphthoquinones by employing simple sequential Michael-type addition with a variety of primary and secondary amines and the condensation reaction of the resulting amine-substituted 1,2-naphthoquinones with o-phenylenediamine. They exhibited absorption peaks originating from the charge transfer transition between the amine and pyrazine segments and benzo[a]phenazine localized π-π* transitions. Although the absorption spectra of the dyes were not significantly influenced by the nature of the solvents, addition of TFA led to a prominent red-shift in the absorption spectra owing to the protonation at the quinoxaline segment which enhanced the electron-accepting ability.

View Article and Find Full Text PDF