Traumatic brain injury (TBI) strongly correlates with neurodegenerative disease. However, it remains unclear which neurodegenerative mechanisms are intrinsic to the brain and which strategies most potently mitigate these processes. We developed a high-intensity ultrasound platform to inflict mechanical injury to induced pluripotent stem cell (iPSC)-derived cortical organoids.
View Article and Find Full Text PDFThis study introduces a novel and simple way to suppress the self-absorption effect in laser-induced breakdown spectroscopy (LIBS) by utilizing a defocusing laser irradiation technique. For this purpose, a Nd:YAG laser with a wavelength of 1,064 nm and repetition rate of 10 Hz with energy in the range of 10 mJ-50 mJ was used. The laser irradiation was focused by using a 150-mm-focal-length plano-convex lens onto the sample surface under defocusing of approximately -6 mm.
View Article and Find Full Text PDFThis study demonstrates a new approach for suppressing the self-absorption effect in single-pulse laser-induced breakdown spectroscopy (LIBS) using unusual parallel laser irradiation. A nanosecond Nd:YAG laser with a wavelength of 1064 nm was fired parallel to and focused at a very close distance of 1 mm to the sample surface. The experiment was carried out in air at atmospheric pressure.
View Article and Find Full Text PDFA unique approach for achieving total suppression of the self-absorption effect in laser-induced breakdown spectroscopy (LIBS) has been demonstrated employing a previously published technique of laser-induced plasma spectroscopy utilizing a helium (He) metastable excited state (LIPS-He*).This achievement was attained by the use of the He metastable excited state (He*) and a Penning-like energy transfer mechanism for the delayed excitation of the ablated analyte atoms. KCl and NaCl samples showed the disappearance of the self-absorption emission lines of K I 766.
View Article and Find Full Text PDF