Publications by authors named "K-H Schlemmer"

Background: The potential of deep learning to support radiologist prostate magnetic resonance imaging (MRI) interpretation has been demonstrated.

Purpose: The aim of this study was to evaluate the effects of increased and diversified training data (TD) on deep learning performance for detection and segmentation of clinically significant prostate cancer-suspicious lesions.

Materials And Methods: In this retrospective study, biparametric (T2-weighted and diffusion-weighted) prostate MRI acquired with multiple 1.

View Article and Find Full Text PDF

Background Men suspected of having clinically significant prostate cancer (sPC) increasingly undergo prostate MRI. The potential of deep learning to provide diagnostic support for human interpretation requires further evaluation. Purpose To compare the performance of clinical assessment to a deep learning system optimized for segmentation trained with T2-weighted and diffusion MRI in the task of detection and segmentation of lesions suspicious for sPC.

View Article and Find Full Text PDF

Brain extraction is a critical preprocessing step in the analysis of neuroimaging studies conducted with magnetic resonance imaging (MRI) and influences the accuracy of downstream analyses. The majority of brain extraction algorithms are, however, optimized for processing healthy brains and thus frequently fail in the presence of pathologically altered brain or when applied to heterogeneous MRI datasets. Here we introduce a new, rigorously validated algorithm (termed HD-BET) relying on artificial neural networks that aim to overcome these limitations.

View Article and Find Full Text PDF

Purpose To compare biparametric contrast-free radiomic machine learning (RML), mean apparent diffusion coefficient (ADC), and radiologist assessment for characterization of prostate lesions detected during prospective MRI interpretation. Materials and Methods This single-institution study included 316 men (mean age ± standard deviation, 64.0 years ± 7.

View Article and Find Full Text PDF

Purpose To evaluate a radiomics model of Breast Imaging Reporting and Data System (BI-RADS) 4 and 5 breast lesions extracted from breast-tissue-optimized kurtosis magnetic resonance (MR) imaging for lesion characterization by using a sensitivity threshold similar to that of biopsy. Materials and Methods This institutional study included 222 women at two independent study sites (site 1: training set of 95 patients; mean age ± standard deviation, 58.6 years ± 6.

View Article and Find Full Text PDF

Purpose To evaluate whether radiomic feature-based magnetic resonance (MR) imaging signatures allow prediction of survival and stratification of patients with newly diagnosed glioblastoma with improved accuracy compared with that of established clinical and radiologic risk models. Materials and Methods Retrospective evaluation of data was approved by the local ethics committee and informed consent was waived. A total of 119 patients (allocated in a 2:1 ratio to a discovery [n = 79] or validation [n = 40] set) with newly diagnosed glioblastoma were subjected to radiomic feature extraction (12 190 features extracted, including first-order, volume, shape, and texture features) from the multiparametric (contrast material-enhanced T1-weighted and fluid-attenuated inversion-recovery imaging sequences) and multiregional (contrast-enhanced and unenhanced) tumor volumes.

View Article and Find Full Text PDF