Publications by authors named "K el-Gendy"

Aquatic organisms are simultaneously exposed to multiple hazardous chemicals that can be released into water bodies. The current study aimed to evaluate the effect of sublethal concentration (1/50 96 h-LC) of two formulated pesticides: ethoprophos, bispyribac-sodium, and their combination for 1, 2, 3, and 4 weeks on oxidative stress, genotoxic response, and gill morphology in Nile tilapia. This study is the first to demonstrate the toxic effects of ethoprophos and bispyribac-sodium mixture on the commercial important species, Oreochromis niloticus.

View Article and Find Full Text PDF

The ecotoxicological consequences of azoxystrobin on land snails have not yet been addressed. Therefore, the present study aims to provide novel data on the threat of a commercial grade azoxystrobin (AMISTAR) at two environmentally relevant concentrations (0.3 µg/ml) and tenfold (3 µg/ml) on the model species, Theba pisana by physiological, biochemical, and histopathological markers for 28 days.

View Article and Find Full Text PDF

Indoxacarb is one of the most extensively used oxadiazine insecticides worldwide, but it may exert detrimental effects on ecosystems, population dynamics, and health. Due to the lack of knowledge on the ecotoxicity of indoxacarb, it is still challenging to assess whether this insecticide poses an ecotoxicological impact on terrestrial environments. Therefore, our study aims to provide novel data on the toxic effects of 28-day dietary exposure to commercial grade indoxacarb at two environmentally relevant concentrations, 0.

View Article and Find Full Text PDF

We present a compelling case of a patient initially diagnosed with a simple sliding hiatus hernia (HH), which was managed conservatively through optimised medical therapy. Over the span of a few years, she developed new symptoms which included epigastric discomfort and pain, prompting further clinical review and imaging investigation. These revealed the progression of her HH from a simple form to a more complex rolling or para-oesophageal type.

View Article and Find Full Text PDF

Background: DNA methylation is an epigenetic mechanism through which environmental factors including nutrition and inflammation influence health. Obesity is a major modifiable risk factor for many common diseases including cardiovascular diseases and cancer. In particular, obesity-induced inflammation resulting from aberrantly-methylated inflammatory genes may drive risk of several non-communicable diseases including colorectal cancer (CRC).

View Article and Find Full Text PDF