Publications by authors named "K Zink"

Purpose: The spot size of scanned particle beams is of crucial importance for the correct dose delivery and, therefore, plays a significant role in the quality assurance (QA) of pencil beam scanning ion beam therapy.

Materials And Methods: This study compares 5 detector types-radiochromic film, ionization chamber (IC) array, flat panel detector, multiwire chamber, and IC-for measuring the spot size of proton and carbon ion beams.

Results: Variations of up to 30% were found between detectors, underscoring the impact of detector choice on QA outcomes.

View Article and Find Full Text PDF

Particle therapy presents a promising alternative to conventional photon therapy for treating non-small cell lung cancer (NSCLC). However, the heterogeneous structure of lung tissue leads to the degradation of the Bragg peak and thereby to the degradation of the dose distribution. This review offers a comprehensive overview of the models developed to account for these modulation effects.

View Article and Find Full Text PDF

A 3D range-modulator (RM), optimized for a single energy and a specific target shape, is a promising and viable solution for the ultra-fast dose delivery in particle therapy. The aim of this work was to investigate the impact of potential beam and modulator misalignments on the dose distribution. Moreover, the FLUKA Monte Carlo model, capable of simulating 3D RMs, was adjusted and validated for the 250 MeV single-energy proton irradiation from a Varian ProBeam system.

View Article and Find Full Text PDF

Purpose: The Marburg Ion-Beam Therapy Center (MIT) is one of two particle therapy centers in Germany that enables the treatment of patients with both protons and carbon ions. The facility was build by Siemens Healthineers and is one of only two centers worldwide built by Siemens (Marburg, Germany and Shanghai, China). The present report provides an overview of technical and clinical operations as well as research activities at MIT.

View Article and Find Full Text PDF

Background: Ultrahigh dose-rate radiation (UHDR) produces less hydrogen peroxide (HO) in pure water, as suggested by some experimental studies, and is used as an argument for the validity of the theory that FLASH spares the normal tissue due to less reactive oxygen species (ROS) production. In contrast, most Monte Carlo simulation studies suggest the opposite.

Purpose: We aim to unveil the effect of UHDR on HO production in pure water and its underlying mechanism, to serve as a benchmark for Monte Carlo simulation.

View Article and Find Full Text PDF