Plants activate defense machinery when infested by herbivorous insects but avoid such costs in the absence of herbivory. However, the key signaling pathway regulators underlying such flexibility and the mechanisms that insects exploit these components to disarm plant defense systems remain elusive. Here, it is reported that immune repressor 14-3-3e in rice Oryza sativa (OsGF14e) regulates immune homeostasis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
DNA repair systems are essential to maintain genome integrity and stability. Some obligate endosymbionts that experience long-term symbiosis with the insect hosts, however, have lost their key components for DNA repair. It is largely unexplored how the bacterial endosymbionts cope with the increased demand for mismatch repairs under heat stresses.
View Article and Find Full Text PDFSpodoptera frugiperda is a long-distance migratory pest with strong dispersal ability, fast reproduction speed and destructive feeding, so it is difficult to prevent and control. Pyrethroid insecticides are commonly used in pest insects control, And since the voltage-gated sodium channel (VGSC) serves as a major target of pyrethroids, it is important to study this gene for pest control. VGSC is an integral transmembrane protein consisting of approximately 2,000 amino acid residues found in neurons, myocytes, endocrine cells, and ovarian cells and involved in the initiation and propagation of excitable cellular action potentials.
View Article and Find Full Text PDFBackground: Body-color polymorphisms in insects are often explained by environmental selective advantages. Differential fitness related to body coloration has been demonstrated in Myzus persicae (Sulzer): performance of the red morph is in general better than that of the green morph on tobacco plants. However, the molecular mechanism involved is largely unclear.
View Article and Find Full Text PDFBackground: Insect glutathione S-transferases (GSTs), a multifunctional protein family, play a crucial role in detoxification of plant defensive compounds. However, they have been rarely investigated in Sitodiplosis mosellana, a destructive pest of wheat worldwide. In this study, we characterized for the first time a delta (SmGSTd1) and two epsilon GST genes (SmGSTe1 and SmGSTe2) and analyzed their expression patterns and functions associated with adaptation to host plant defense in this species.
View Article and Find Full Text PDF