Introduction: Heat stress poses a significant environmental challenge, impacting plant growth, diminishing crop production, and reducing overall productivity. Plants employ various mechanisms to confront heat stress, and their ability to survive hinges on their capacity to perceive and activate appropriate physiological and biochemical responses. One such mechanism involves regulating multiple genes and coordinating their expression through different signaling pathways.
View Article and Find Full Text PDFDespite being a highly nutritious and resilient cereal, pearl millet is not popular among consumers and food industries due to the short shelf-life of flour attributed to rapid rancidity development. The biochemical mechanism underlying rancidity, a complex and quantitative trait, needs to be better understood. The present study aims to elucidate the differential accumulation of metabolites in pearl millet that impact the rancidity process.
View Article and Find Full Text PDFBMC Plant Biol
October 2024
Dinanath grass (Pennisetum pedicellatum Trin.) is an extensively grown forage grass known for its significant drought resilience. In order to comprehensively grasp the adaptive mechanism of Dinanath grass in response to water deficient conditions, transcriptomic and metabolomics were applied in the leaves of Dinanath grass exposed to two distinct drought intensities (48-hour and 96-hour).
View Article and Find Full Text PDFThe growth-regulating factor (GRF) and GRF-interacting factor (GIF) families encode plant-specific transcription factors and play vital roles in plant development and stress response processes. Although GRF and GIF genes have been identified in various plant species, there have been no reports of the analysis and identification of the GRF and GIF transcription factor families in chickpea (Cicer arietinum) and pigeonpea (Cajanus cajan). The present study identified seven CaGRFs, eleven CcGRFs, four CaGIFs, and four CcGIFs.
View Article and Find Full Text PDF