Publications by authors named "K Yogalakshmi"

N-acyl homoserine lactones (AHLs) based quorum sensing controls various phenotype expressions, including biofilm formation, hence its interruption is considered to be an ideal option for membrane biofouling control. Bead entrapped quorum quenching bacteria was reported to be an efficient approach for degradation of signal molecules in recent years. In the present study, we investigated the potential of quorum quenching (QQ) bacteria immobilised magnetic nanocomposite beads (IMN) in degradation of signalling molecule, n-hexanoyl homoserine lactone (C6-HSL).

View Article and Find Full Text PDF

Background: The capsid coated protein of Bluetongue virus (BTV) VP2 is responsible for BTV transmission by the Culicoides vector to vertebrate hosts. Besides, VP2 is responsible for BTV entry into permissive cells and hence plays a major role in disease progression. However, its mechanism of action is still unknown.

View Article and Find Full Text PDF

Covalent-immobilization of the laccase enzyme onto the iron oxide nanoparticles was achieved using N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDAC) as cross-linkers. The presence of sulphur moeity in the laccase immobilized nanoparticles (LNPs) observed through Scanning Electron Microscopy- Energy dispersive X-ray spectroscopy (SEM-EDS) spectra confirmed the immobilization of laccase enzyme. The TEM analysis of iron oxide nanoparticles (FNPs), chitosan coated iron nanoparticles (CNPs) and laccase immobilized nanoparticles (LNPs) confirmed their sizes around 12, 15 and 20 nm, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • - The food industry produces significant amounts of food waste, particularly from the processing sector, which can be converted into biofuels through methods like dark fermentation and anaerobic digestion.
  • - Six types of food processing wastes (oil, fruit and vegetable, dairy, brewery, livestock, and agriculture) are explored, highlighting challenges such as the chemical properties of these wastes that complicate the production of hydrogen and methane.
  • - The review emphasizes enhancing methods, operational factors, and the environmental impact on producing biohythane, as well as the critical role of feedstock in establishing a successful circular bioeconomy.
View Article and Find Full Text PDF

Tubular upflow microbial fuel cell (MFC) utilizing sea food processing wastewater was evaluated for wastewater treatment efficiency and power generation. At an organic loading rate (OLR) of 0.6 g d(-1), the MFC accomplished total and soluble chemical oxygen demand (COD) removal of 83 and 95%, respectively.

View Article and Find Full Text PDF