Publications by authors named "K Yamaguchi-Shinozaki"

Land plants have evolved a hydrophobic cuticle on the surface of aerial organs as an adaptation to ensure survival in terrestrial environments. Cuticle is mainly composed of lipids, namely cutin and intracuticular wax, with epicuticular wax deposited on plant surface. The composition and permeability of cuticle have a large influence on its ability to protect plants against drought stress.

View Article and Find Full Text PDF

Drought is one of the most devastating causes of yield losses in crops like maize, and the anticipated increases in severity and duration of drought spells due to climate change pose an imminent threat to agricultural productivity. To understand the drought response, phenotypic and molecular studies are typically performed at a given time point after drought onset, representing a steady-state adaptation response. Because growth is a dynamic process, we monitored the drought response with high temporal resolution and examined cellular and transcriptomic changes after rehydration at 4 and 6 days after leaf four appearance.

View Article and Find Full Text PDF

Background: Development of transgenic rice overexpressing transcription factors involved in drought response has been previously reported to confer drought tolerance and therefore represents a means of crop improvement. We transformed lowland rice IR64 with OsTZF5, encoding a CCCH-tandem zinc finger protein, under the control of the rice LIP9 stress-inducible promoter and compared the drought response of transgenic lines and nulls to IR64 in successive screenhouse paddy and field trials up to the T generation.

Results: Compared to the well-watered conditions, the level of drought stress across experiments varied from a minimum of - 25 to - 75 kPa at a soil depth of 30 cm which reduced biomass by 30-55% and grain yield by 1-92%, presenting a range of drought severities.

View Article and Find Full Text PDF

Drought and cold represent distinct types of abiotic stress, each initiating unique primary signaling pathways in response to dehydration and temperature changes, respectively. However, a convergence at the gene regulatory level is observed where a common set of stress-responsive genes is activated to mitigate the impacts of both stresses. In this review, we explore these intricate regulatory networks, illustrating how plants coordinate distinct stress signals into a collective transcriptional strategy.

View Article and Find Full Text PDF

Global climate change is predicted to result in increased yield losses of agricultural crops caused by environmental conditions. In particular, heat and drought stress are major factors that negatively affect plant development and reproduction, and previous studies have revealed how these stresses induce plant responses at physiological and molecular levels. Here, we provide a comprehensive overview of current knowledge concerning how drought, heat, and combinations of these stress conditions affect the status of plants, including crops, by affecting factors such as stomatal conductance, photosynthetic activity, cellular oxidative conditions, metabolomic profiles, and molecular signaling mechanisms.

View Article and Find Full Text PDF