J Mater Chem B
January 2025
Current cancer treatments, including chemotherapy, surgery, and radiation, often present significant challenges such as severe side effects, drug resistance, and damage to healthy tissues. To address these issues, we introduce a virus-inspired RNA mimicry approach, specifically through the development of uridine-rich nanoparticles (UNPs) synthesized using the rolling circle transcription (RCT) technique. These UNPs are designed to mimic the poly-U tail sequences of viral RNA, effectively engaging RIG-I-like receptors (RLRs) such as MDA5 and LGP2 in cancer cells.
View Article and Find Full Text PDFBackground: This study aimed to explore the association between admission HbA1c and the risk of 1-year vascular outcomes stratified by age group in patients with acute ischemic stroke (AIS) and diabetes mellitus (DM).
Methods: This study analyzed prospective multicenter data from patients with AIS and DM. Admission HbA1C were categorized as:≤6.
Stroke is a neurological complication that can occur in patients admitted to the intensive care unit (ICU) for non-neurological conditions, leading to increased mortality and prolonged hospital stays. The incidence of stroke in ICU settings is notably higher compared to the general population, and delays in diagnosis can lead to irreversible neurological damage. Early diagnosis of stroke is critical to protect brain tissue and treat neurological defects.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinting has emerged with potential for creating functional 3D tissues with customized geometries. However, the limited availability of bioinks capable of printing 3D structures with both high-shape fidelity and desired biological environments for encapsulated cells remains a key challenge. Here, we present a 3D bioprinting approach that uses universal fugitive network bioinks prepared by loading cells and hydrogel precursors (bioink base materials) into a 3D printable fugitive carrier.
View Article and Find Full Text PDF