J Mech Behav Biomed Mater
January 2025
The rabbit is a popular experimental model in orthopaedic biomechanics due to the presence of natural Haversian remodeling, allowing for better translational relevance to the mechanobiology of human bone over traditional rodent models. Although rabbits are often used with computational modeling approaches such as the finite element (FE) method, a validated and widely agreed upon density-elasticity relationship, which is required to make subject-specific predictions, does not exist. Therefore, the purpose of this study was to determine and validate an accurate density-elasticity relationship for rabbit hindlimb bones using mathematical optimization.
View Article and Find Full Text PDFObjective: Medical laboratory data together with prescribing and hospitalisation records are three of the most used electronic health records (EHRs) for data-driven health research. In Scotland, hospitalisation, prescribing and the death register data are available nationally whereas laboratory data is captured, stored and reported from local health board systems with significant heterogeneity. For researchers or other users of this regionally curated data, working on laboratory datasets across regional cohorts requires effort and time.
View Article and Find Full Text PDFThe tubarial glands (TGs) are a collection of salivary glands (SGs) located within the nasopharynx, proximal to the eustachian tube. Currently, there is no quantitative characterization of the TGs. We investigated the histological architecture of the TGs and compared it with the major and minor SGs for categorization.
View Article and Find Full Text PDFMilk contains high concentrations of amyloidogenic casein proteins and is supersaturated with respect to crystalline calcium phosphates such as apatite. Nevertheless, the mammary gland normally remains unmineralized and free of amyloid. Unlike κ-casein, β- and α-caseins are highly effective mineral chaperones that prevent ectopic and pathological calcification of the mammary gland.
View Article and Find Full Text PDFBackground: The MAKO Robotic-Arm system is a cutting-edge technology which combines both computed tomography (CT) scanning and three-dimensional planning to determine the ideal size and orientation of implants prior to bone resection. It is typically utilized within a general orthopedic setting for joint replacement procedures, such as total joint arthroplasties. However, its use within orthopedic oncology, which contains a much more compromised patient population and more complex surgical treatment, is not well documented within the literature.
View Article and Find Full Text PDF