The wheat straw, an inedible biomass that can be continuously produced in a space vehicle has been used to produce activated carbon for effective control of NOx emissions from the incineration of wastes. The optimal carbonization temperature of wheat straw was found to be around 600 degrees C when a burnoff of 67% was observed. The BET surface area of the activated carbon produced from the wheat straw reached as high as 300 m2/g.
View Article and Find Full Text PDFThe use of the activated carbon produced from rice hulls to control NOx emissions for future deep space missions has been demonstrated. The optimal carbonization temperature range was found to be between 600 and 750 degrees C. A burnoff of 61.
View Article and Find Full Text PDFPhotosynthesis, the conversion of light energy into chemical energy, is a critical biological process, whereby plants synthesize carbohydrates from light, carbon dioxide (CO2) and water. The influence of gravity on this biological process, however, is not well understood. Thus, centrifugation was used to alter the gravity environment of Euglena gracilis grown on nutritive agar plates illuminated with red and blue light emitting diodes.
View Article and Find Full Text PDFConsiderable evidence exists to support the hypothesis that human-generated wastes can be utilized as resources in crop production. In the waste mix from a Closed Ecological Life Support System (CELSS), the elemental resources are found mainly in the solid fraction. In order to make these resources available for crop growth, it is necessary to convert the solid wastes to either an aqueous or a gaseous phase.
View Article and Find Full Text PDFThe goal of resource recovery in a regenerative life support system is maintenance of product quality to sure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production.
View Article and Find Full Text PDF