Publications by authors named "K Watari"

A slew of common metabolic disorders, including type 2 diabetes, metabolic dysfunction-associated steatotic liver disease and steatohepatitis, are exponentially increasing in our sedentary and overfed society. While macronutrients directly impact metabolism and bioenergetics, new evidence implicates immune cells as critical sensors of nutritional cues and important regulators of metabolic homeostasis. A deeper interrogation of the intricate and multipartite interactions between dietary components, immune cells and metabolically active tissues is needed for a better understanding of metabolic regulation and development of new treatments for common metabolic diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Hepatocellular carcinoma (HCC) arises from liver cells (hepatocytes) that are damaged and undergoing compensatory growth, particularly due to metabolic disorders like MASH.
  • The tumor-suppressive effects of p53 and the anti-cancer role of the enzyme FBP1 are undermined in HCC, as FBP1 is commonly degraded and suppressed in tumors.
  • Key metabolic pathways involving AKT and NRF2 play a role in reversing the effects of cellular senescence, boosting the growth of HCC cells and leading to the accumulation of genetic mutations that contribute to cancer progression.
View Article and Find Full Text PDF

The exponential rise in metabolic dysfunction-associated steatotic liver disease (MASLD) parallels the ever-increasing consumption of energy-dense diets, underscoring the need for effective MASLD-resolving drugs. MASLD pathogenesis is linked to obesity, diabetes, "gut-liver axis" alterations, and defective interleukin-22 (IL-22) signaling. Although barrier-protective IL-22 blunts diet-induced metabolic alterations, inhibits lipid intake, and reverses microbial dysbiosis, obesogenic diets rapidly suppress its production by small intestine-localized innate lymphocytes.

View Article and Find Full Text PDF

A 76-year-old woman infected with Yezo virus (YEZV) developed liver dysfunction and thrombocytopenia following a tick bite. Despite the severity of her elevated liver enzymes and reduced platelet counts, the patient's condition improved spontaneously without any specific treatment. To our knowledge, this represents the first documented case where the YEZV genome was detected simultaneously in a patient's serum and the tick (Ixodes persulcatus) that bit the patient.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the transplantation of retinal organoid sheets derived from induced pluripotent stem cells (iPSCs) into patients with advanced retinitis pigmentosa, assessing both safety and survival of the transplant.
  • Results showed that the retinal organoid sheets remained stable for 2 years post-transplant and led to increased retinal thickness without serious side effects in both patients.
  • Visual function improvement was noted to be less progressive in the treated eyes compared to untreated ones, indicating that iPSC-derived retinal organoid sheet transplantation may be a promising treatment for retinal diseases that requires further investigation.
View Article and Find Full Text PDF