Background: Atrial fibrillation (AF) is a common cardiac arrhythmia associated with significant morbidity and mortality. Rapid electrical stimulation (RES) of atrial fibroblasts plays a crucial role in AF pathogenesis, but the underlying molecular mechanisms remain unclear. This study investigates the regulatory axis involving MALAT1, miR-499a-5p, and SOX6 in human cardiac fibroblasts from adult atria (HCF-aa) under RES conditions.
View Article and Find Full Text PDFBackground: Chronotropic incompetence (CI) severely limits exercise tolerance due to impaired heart rate responses. This study investigated whether pacemaker with closed-loop stimulation (DDD-CLS) pacing, which provides rate acceleration in response to exertion, could enhance lung function and cardiopulmonary capacity compared pacemaker without CLS pacing in patients with CI.
Methods: This randomized crossover trial included 32 patients with CI who were compared to each CLS and DDD pacing over 2 months.
Background: Metastasis-associated lung adenocarcinoma transcript 1 ( MALAT1 ) plays a critical role in the pathophysiology of diabetes-related complications. However, whether macrophage-derived MALAT1 affects autophagic activity under hyperglycemic conditions is unclear. Therefore, we investigated the molecular regulatory mechanisms of macrophage-derived MALAT1 and autophagy under hyperglycemic conditions.
View Article and Find Full Text PDFAims: This study aimed to investigate the effectiveness of closed-loop stimulation (CLS) pacing compared with the traditional DDD mode in patients with chronotropic incompetence (CI) using bicycle-based cardiopulmonary exercise testing (CPET).
Methods And Results: This single-centre, randomized crossover trial involved 40 patients with CI. Patients were randomized to receive either DDD-CLS or DDD mode pacing for 2 months, followed by a crossover to the alternative mode for an additional 2 months.