Publications by authors named "K W Cullings"

We used high-throughput DNA sequencing methods combined with bio-geochemical profiles to characterize the internal environment and community structure of the microbiome of the basidiomycete fungus Pisolithus arhizus (Scop.) Rauschert from soils within a geothermal feature of Yellowstone National Park. Pisolithus arhizus is unique in that it forms closed fruiting bodies that sequester visible sulfur within.

View Article and Find Full Text PDF

In an accompanying editorial Dr Petr Baldrian made a case casting doubt on our recent work addressing the saprophytic potential of ectomycorrhizal (EM) fungi. Dr Baldrian's statements illustrate a very valid truth: the book is still very much open on this subject. The point he raised that the only logical reason for these fungi to be responding to high carbon demand or decreased host photosynthetic capacity by up-regulating enzymes is for the purpose of carbon acquisition is valid as well.

View Article and Find Full Text PDF

Ectomycorrhizal (EM) basidiomycete fungi are obligate mutualists of pines and hardwoods that receive fixed C from the host tree. Though they often share most recent common ancestors with wood-rotting fungi, it is unclear to what extent EM fungi retain the ability to express enzymes that break down woody substrates. In this study, we tested the hypothesis that the dominant EM fungus in a pure pine system retains the ability to produce enzymes that break down woody substrates in a natural setting, and that this ability is inducible by reduction of host photosynthetic potential via partial defoliation.

View Article and Find Full Text PDF

The Atacama Desert is one of the driest environments on Earth, and has been so for over 200,000 years. Previous reports have suggested that surprisingly low numbers of culturable bacteria, counted as biomass or species diversity, are present in Atacama sands collected from the most hyperarid regions. In previous studies, the presence of eukaryotic organisms was not discussed.

View Article and Find Full Text PDF

Loss of photosynthetic area can affect soil microbial communities by altering the availability of fixed carbon. We used denaturing gradient gel electrophoresis (DGGE) and Biolog filamentous-fungus plates to determine the effects of artificial defoliation of pines in a mixed pine-spruce forest on the composition of the fungal community in a forest soil. As measured by DGGE, two fungal species were affected significantly by the defoliation of pines (P < 0.

View Article and Find Full Text PDF