Publications by authors named "K W Caldecott"

Defects in DNA single-strand break repair are associated with neurodevelopmental and neurodegenerative disorders. One such disorder is that resulting from mutations in , a scaffold protein that plays a central role in DNA single-strand base repair. XRCC1 is recruited at sites of single-strand breaks by PARP1, a protein that detects and is activated by such breaks and is negatively regulated by XRCC1 to prevent excessive PARP binding and activity.

View Article and Find Full Text PDF

In response to DNA damage, the histone PARylation factor 1 (HPF1) regulates PARP1/2 activity, facilitating serine ADP-ribosylation of chromatin-associated factors. While PARP1/2 are known for their role in DNA single-strand break repair (SSBR), the significance of HPF1 in this process remains unclear. Here, we investigated the impact of HPF1 deficiency on cellular survival and SSBR following exposure to various genotoxins.

View Article and Find Full Text PDF

DNA-protein crosslinks (DPCs) are toxic lesions that inhibit DNA related processes. Post-translational modifications (PTMs), including SUMOylation and ubiquitylation, play a central role in DPC resolution, but whether other PTMs are also involved remains elusive. Here, we identify a DPC repair pathway orchestrated by poly-ADP-ribosylation (PARylation).

View Article and Find Full Text PDF

The KU heterodimer (KU70/80) is rapidly recruited to DNA double-strand breaks (DSBs) to regulate their processing and repair. Previous work has revealed that the amino-terminal von Willebrand-like (vWA-like) domain in KU80 harbours a conserved hydrophobic pocket that interacts with a short peptide motif known as the Ku-binding motif (KBM). The KBM is present in a variety of DNA repair proteins such as APLF, CYREN, and Werner protein (WRN).

View Article and Find Full Text PDF